HOME
*





Least Fixed-point Logic
In mathematical logic, fixed-point logics are extensions of classical predicate logic that have been introduced to express recursion. Their development has been motivated by descriptive complexity theory and their relationship to database query languages, in particular to Datalog. Least fixed-point logic was first studied systematically by Yiannis N. Moschovakis in 1974, and it was introduced to computer scientists in 1979, when Alfred Aho and Jeffrey Ullman suggested fixed-point logic as an expressive database query language. Partial fixed-point logic For a relational signature ''X'', FO FP''X'') is the set of formulas formed from ''X'' using first-order connectives and predicates, second-order variables as well as a partial fixed point operator \operatorname used to form formulas of the form operatorname_ \varphivec, where P is a second-order variable, \vec a tuple of first-order variables, \vec a tuple of terms and the lengths of \vec and \vec coincide with the arity of P ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematical Logic
Mathematical logic is the study of logic, formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory. Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics. Since its inception, mathematical logic has both contributed to and been motivated by the study of foundations of mathematics. This study began in the late 19th century with the development of axiomatic frameworks for geometry, arithmetic, and Mathematical analysis, analysis. In the early 20th century it was shaped by David Hilbert's Hilbert's program, program to prove the consistency of foundational theories. Results of Kurt Gödel, Gerhard Gentzen, and others provided partial resolution to the program, and clarified the issues involved in pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Moshe Vardi
, honorific_suffix = , image = Moshe Vardi IMG 0010.jpg , birth_date = , birth_place = Israel , workplaces = Rice UniversityIBM ResearchStanford University , alma_mater = , thesis_title = The Implication Problem for Data Dependencies in the Relational Model , thesis_url = , thesis_year = 1981 , doctoral_advisor = Catriel Beeri , doctoral_students = Kristin Yvonne Rozier , fields = LogicComputation , awards = , website = Moshe Ya'akov Vardi ( he, משה יעקב ורדי) is an Israeli mathematician and computer scientist. He is a Professor of Computer Science at Rice University, United States. He is University Professor, the Karen Ostrum George Professor in Computational Engineering, Distinguished Service Professor, and director of the Ken Kennedy Institute for Information Technology. His interests focus on applications of logic to computer science, including database theory, finite mode ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Descriptive Complexity
''Descriptive Complexity'' is a book in mathematical logic and computational complexity theory by Neil Immerman. It concerns descriptive complexity theory, an area in which the expressibility of mathematical properties using different types of logic is shown to be equivalent to their computability in different types of resource-bounded models of computation. It was published in 1999 by Springer-Verlag in their book series Graduate Texts in Computer Science. Topics The book has 15 chapters, roughly grouped into five chapters on first-order logic, three on second-order logic, and seven independent chapters on advanced topics. The first two chapters provide background material in first-order logic (including first-order arithmetic, the BIT predicate, and the notion of a first-order query) and complexity theory (including formal languages, resource-bounded complexity classes, and complete problems). Chapter three begins the connection between logic and complexity, with a proof that th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


AC (complexity)
In circuit complexity, AC is a complexity class hierarchy. Each class, ACi, consists of the languages recognized by Boolean circuits with depth O(\log^i n) and a polynomial number of unlimited fan-in AND and OR gates. The name "AC" was chosen by analogy to NC, with the "A" in the name standing for "alternating" and referring both to the alternation between the AND and OR gates in the circuits and to alternating Turing machines., page 27-18. The smallest AC class is AC0, consisting of constant-depth unlimited fan-in circuits. The total hierarchy of AC classes is defined as \mbox = \bigcup_ \mbox^i Relation to NC The AC classes are related to the NC classes, which are defined similarly, but with gates having only constant fanin. For each ''i'', we have :\mbox^i \subseteq \mbox^i \subseteq \mbox^. As an immediate consequence of this, we have that NC = AC. It is known that inclusion is strict for ''i'' = 0. Variations The power of the AC classes can be affected by addi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




L (complexity)
In computational complexity theory, L (also known as LSPACE or DLOGSPACE) is the complexity class containing decision problems that can be solved by a deterministic Turing machine using a logarithmic amount of writable memory space., Definition 8.12, p. 295., p. 177. Formally, the Turing machine has two tapes, one of which encodes the input and can only be read, whereas the other tape has logarithmic size but can be read as well as written. Logarithmic space is sufficient to hold a constant number of pointers into the input and a logarithmic number of boolean flags, and many basic logspace algorithms use the memory in this way. Complete problems and logical characterization Every non-trivial problem in L is complete under log-space reductions, so weaker reductions are required to identify meaningful notions of L-completeness, the most common being first-order reductions. A 2004 result by Omer Reingold shows that USTCON, the problem of whether there exists a path ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Syntactic Sugar
In computer science, syntactic sugar is syntax within a programming language that is designed to make things easier to read or to express. It makes the language "sweeter" for human use: things can be expressed more clearly, more concisely, or in an alternative style that some may prefer. Syntactic sugar is usually a shorthand for a common operation that could also be expressed in an alternate, more verbose, form: The programmer has a choice of whether to use the shorter form or the longer form, but will usually use the shorter form since it is shorter and easier to type and read. For example, many programming languages provide special syntax for referencing and updating array elements. Abstractly, an array reference is a procedure of two arguments: an array and a subscript vector, which could be expressed as get_array(Array, vector(i,j)). Instead, many languages provide syntax such as Array ,j/code>. Similarly an array element update is a procedure consisting of three arguments, for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


NL (complexity)
In computational complexity theory, NL (Nondeterministic Logarithmic-space) is the complexity class containing decision problems that can be solved by a nondeterministic Turing machine using a logarithmic amount of memory space. NL is a generalization of L, the class for logspace problems on a deterministic Turing machine. Since any deterministic Turing machine is also a nondeterministic Turing machine, we have that L is contained in NL. NL can be formally defined in terms of the computational resource nondeterministic space (or NSPACE) as NL = NSPACE(log ''n''). Important results in complexity theory allow us to relate this complexity class with other classes, telling us about the relative power of the resources involved. Results in the field of algorithms, on the other hand, tell us which problems can be solved with this resource. Like much of complexity theory, many important questions about NL are still open (see Unsolved problems in computer science). Occasionally NL ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Transitive Closure
In mathematics, the transitive closure of a binary relation on a set is the smallest relation on that contains and is transitive. For finite sets, "smallest" can be taken in its usual sense, of having the fewest related pairs; for infinite sets it is the unique minimal transitive superset of . For example, if is a set of airports and means "there is a direct flight from airport to airport " (for and in ), then the transitive closure of on is the relation such that means "it is possible to fly from to in one or more flights". Informally, the ''transitive closure'' gives you the set of all places you can get to from any starting place. More formally, the transitive closure of a binary relation on a set is the transitive relation on set such that contains and is minimal; see . If the binary relation itself is transitive, then the transitive closure is that same binary relation; otherwise, the transitive closure is a different relation. Conversely, transitive ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Arity
Arity () is the number of arguments or operands taken by a function, operation or relation in logic, mathematics, and computer science. In mathematics, arity may also be named ''rank'', but this word can have many other meanings in mathematics. In logic and philosophy, it is also called adicity and degree. In linguistics, it is usually named valency. Examples The term "arity" is rarely employed in everyday usage. For example, rather than saying "the arity of the addition operation is 2" or "addition is an operation of arity 2" one usually says "addition is a binary operation". In general, the naming of functions or operators with a given arity follows a convention similar to the one used for ''n''-based numeral systems such as binary and hexadecimal. One combines a Latin prefix with the -ary ending; for example: * A nullary function takes no arguments. ** Example: f()=2 * A unary function takes one argument. ** Example: f(x)=2x * A binary function takes two arguments. ** Examp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




P (complexity)
In computational complexity theory, P, also known as PTIME or DTIME(''n''O(1)), is a fundamental complexity class. It contains all decision problems that can be solved by a deterministic Turing machine using a polynomial amount of computation time, or polynomial time. Cobham's thesis holds that P is the class of computational problems that are "efficiently solvable" or " tractable". This is inexact: in practice, some problems not known to be in P have practical solutions, and some that are in P do not, but this is a useful rule of thumb. Definition A language ''L'' is in P if and only if there exists a deterministic Turing machine ''M'', such that * ''M'' runs for polynomial time on all inputs * For all ''x'' in ''L'', ''M'' outputs 1 * For all ''x'' not in ''L'', ''M'' outputs 0 P can also be viewed as a uniform family of boolean circuits. A language ''L'' is in P if and only if there exists a polynomial-time uniform family of boolean circuits \, such that * For all n \in \m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Neil Immerman
Neil Immerman (born 24 November 1953, Manhasset, New York) is an American theoretical computer scientist, a professor of computer science at the University of Massachusetts Amherst.Faculty directory: Neil Immerman
Computer Science Department, , retrieved 2010-01-23.
He is one of the key developers of , an approach he is currently applying to research in model checking, database theory, and computational complexity theory. Professor Immerman is an ed ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Descriptive Complexity Theory
Descriptive complexity is a branch of computational complexity theory and of finite model theory that characterizes complexity classes by the type of logic needed to express the languages in them. For example, PH, the union of all complexity classes in the polynomial hierarchy, is precisely the class of languages expressible by statements of second-order logic. This connection between complexity and the logic of finite structures allows results to be transferred easily from one area to the other, facilitating new proof methods and providing additional evidence that the main complexity classes are somehow "natural" and not tied to the specific abstract machines used to define them. Specifically, each logical system produces a set of queries expressible in it. The queries – when restricted to finite structures – correspond to the computational problems of traditional complexity theory. The first main result of descriptive complexity was Fagin's theorem, shown by Ronald Fagin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]