HOME
*





Langlands–Deligne Local Constant
In mathematics, the Langlands–Deligne local constant, also known as the local epsilon factor or local Artin root number (up to an elementary real function of ''s''), is an elementary function associated with a representation of the Weil group of a local field. The functional equation :L(ρ,''s'') = ε(ρ,''s'')L(ρ∨,1−''s'') of an Artin L-function has an elementary function ε(ρ,''s'') appearing in it, equal to a constant called the Artin root number times an elementary real function of ''s'', and Langlands discovered that ε(ρ,''s'') can be written in a canonical way as a product :ε(ρ,''s'') = Π ε(ρ''v'', ''s'', ψ''v'') of local constants ε(ρ''v'', ''s'', ψ''v'') associated to primes ''v''. Tate proved the existence of the local constants in the case that ρ is 1-dimensional in Tate's thesis. proved the existence of the local constant ε(ρ''v'', ''s'', ψ''v'') up to sign. The original proof of the existence of the local constants by used local methods and was ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Compositio Mathematica
''Compositio Mathematica'' is a monthly peer-reviewed mathematics journal established by L.E.J. Brouwer in 1935. It is owned by the Foundation Compositio Mathematica, and since 2004 it has been published on behalf of the Foundation by the London Mathematical Society in partnership with Cambridge University Press. According to the ''Journal Citation Reports'', the journal has a 2020 2-year impact factor of 1.456 and a 2020 5-year impact factor of 1.696. The editors-in-chief are Jochen Heinloth, Bruno Klingler, Lenny Taelman, and Éric Vasserot. Early history The journal was established by L. E. J. Brouwer in response to his dismissal from ''Mathematische Annalen'' in 1928. An announcement of the new journal was made in a 1934 issue of the ''American Mathematical Monthly''. In 1940 the publication of the journal was suspended due to the German occupation of the Netherlands Despite Dutch neutrality, Nazi Germany invaded the Netherlands on 10 May 1940 as part of Fall Gelb (Case ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Elementary Function
In mathematics, an elementary function is a function of a single variable (typically real or complex) that is defined as taking sums, products, roots and compositions of finitely many polynomial, rational, trigonometric, hyperbolic, and exponential functions, including possibly their inverse functions (e.g., arcsin, log, or ''x''1/''n''). All elementary functions are continuous on their domains. Elementary functions were introduced by Joseph Liouville in a series of papers from 1833 to 1841. An algebraic treatment of elementary functions was started by Joseph Fels Ritt in the 1930s. Examples Basic examples Elementary functions of a single variable include: * Constant functions: 2,\ \pi,\ e, etc. * Rational powers of : x,\ x^2,\ \sqrt\ (x^\frac),\ x^\frac, etc. * more general algebraic functions: f(x) satisfying f(x)^5+f(x)+x=0, which is not expressible through n-th roots or rational powers of alone * Exponential functions: e^x, \ a^x * Logarithms: \ln x, \ \log_a x ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Representation (mathematics)
In mathematics, a representation is a very general relationship that expresses similarities (or equivalences) between mathematical objects or structures. Roughly speaking, a collection ''Y'' of mathematical objects may be said to ''represent'' another collection ''X'' of objects, provided that the properties and relationships existing among the representing objects ''yi'' conform, in some consistent way, to those existing among the corresponding represented objects ''xi''. More specifically, given a set ''Π'' of properties and relations, a ''Π''-representation of some structure ''X'' is a structure ''Y'' that is the image of ''X'' under a homomorphism that preserves ''Π''. The label ''representation'' is sometimes also applied to the homomorphism itself (such as group homomorphism in group theory). Representation theory Perhaps the most well-developed example of this general notion is the subfield of abstract algebra called representation theory, which studies the representing ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Weil Group
In mathematics, a Weil group, introduced by , is a modification of the absolute Galois group of a local or global field, used in class field theory. For such a field ''F'', its Weil group is generally denoted ''WF''. There also exists "finite level" modifications of the Galois groups: if ''E''/''F'' is a finite extension, then the relative Weil group of ''E''/''F'' is ''W''''E''/''F'' = ''WF''/ (where the superscript ''c'' denotes the commutator subgroup). For more details about Weil groups see or or . Weil group of a class formation The Weil group of a class formation with fundamental classes ''u''''E''/''F'' ∈ ''H''2(''E''/''F'', ''A''''F'') is a kind of modified Galois group, used in various formulations of class field theory, and in particular in the Langlands program. If ''E''/''F'' is a normal layer, then the (relative) Weil group ''W''''E''/''F'' of ''E''/''F'' is the extension :1 → ''A''''F'' → ''W''''E''/''F'' → Gal(''E''/''F'') → 1 co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Local Field
In mathematics, a field ''K'' is called a (non-Archimedean) local field if it is complete with respect to a topology induced by a discrete valuation ''v'' and if its residue field ''k'' is finite. Equivalently, a local field is a locally compact topological field with respect to a non-discrete topology. Sometimes, real numbers R, and the complex numbers C (with their standard topologies) are also defined to be local fields; this is the convention we will adopt below. Given a local field, the valuation defined on it can be of either of two types, each one corresponds to one of the two basic types of local fields: those in which the valuation is Archimedean and those in which it is not. In the first case, one calls the local field an Archimedean local field, in the second case, one calls it a non-Archimedean local field. Local fields arise naturally in number theory as completions of global fields. While Archimedean local fields have been quite well known in mathematics for at lea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Functional Equation
In mathematics, a functional equation is, in the broadest meaning, an equation in which one or several functions appear as unknowns. So, differential equations and integral equations are functional equations. However, a more restricted meaning is often used, where a ''functional equation'' is an equation that relates several values of the same function. For example, the logarithm functions are essentially characterized by the ''logarithmic functional equation'' \log(xy)=\log(x) + \log(y). If the domain of the unknown function is supposed to be the natural numbers, the function is generally viewed as a sequence, and, in this case, a functional equation (in the narrower meaning) is called a recurrence relation. Thus the term ''functional equation'' is used mainly for real functions and complex functions. Moreover a smoothness condition is often assumed for the solutions, since without such a condition, most functional equations have very irregular solutions. For example, the ga ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Artin L-function
In mathematics, an Artin ''L''-function is a type of Dirichlet series associated to a linear representation ρ of a Galois group ''G''. These functions were introduced in 1923 by Emil Artin, in connection with his research into class field theory. Their fundamental properties, in particular the Artin conjecture described below, have turned out to be resistant to easy proof. One of the aims of proposed non-abelian class field theory is to incorporate the complex-analytic nature of Artin ''L''-functions into a larger framework, such as is provided by automorphic forms and the Langlands program. So far, only a small part of such a theory has been put on a firm basis. Definition Given \rho , a representation of G on a finite-dimensional complex vector space V, where G is the Galois group of the finite extension L/K of number fields, the Artin L-function: L(\rho,s) is defined by an Euler product. For each prime ideal \mathfrak p in K's ring of integers, there is an Euler factor, whi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Artin Root Number
In mathematics, an Artin ''L''-function is a type of Dirichlet series associated to a linear representation ρ of a Galois group ''G''. These functions were introduced in 1923 by Emil Artin, in connection with his research into class field theory. Their fundamental properties, in particular the Artin conjecture described below, have turned out to be resistant to easy proof. One of the aims of proposed non-abelian class field theory is to incorporate the complex-analytic nature of Artin ''L''-functions into a larger framework, such as is provided by automorphic forms and the Langlands program. So far, only a small part of such a theory has been put on a firm basis. Definition Given \rho , a representation of G on a finite-dimensional complex vector space V, where G is the Galois group of the finite extension L/K of number fields, the Artin L-function: L(\rho,s) is defined by an Euler product. For each prime ideal \mathfrak p in K's ring of integers, there is an Euler factor, whic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tate's Thesis
In number theory, Tate's thesis is the 1950 thesis, PhD thesis of completed under the supervision of Emil Artin at Princeton University. In it, Tate used a translation invariant integration on the locally compact group of ideles to lift the zeta function twisted by a Hecke character, i.e. a Hecke L-function, of a number field to a zeta integral and study its properties. Using harmonic analysis, more precisely the Poisson summation formula, he proved the functional equation and meromorphic continuation of the zeta integral and the Hecke L-function. He also located the poles of the twisted zeta function. His work can be viewed as an elegant and powerful reformulation of a work of Erich Hecke on the proof of the functional equation of the Hecke L-function. Erich Hecke used a generalized Theta function, theta series associated to an algebraic number field and a lattice in its ring of integers. Iwasawa–Tate theory Kenkichi Iwasawa independently discovered essentially the same meth ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Brauer's Theorem On Induced Characters
Brauer's theorem on induced characters, often known as Brauer's induction theorem, and named after Richard Brauer, is a basic result in the branch of mathematics known as character theory, within representation theory of a finite group. Background A precursor to Brauer's induction theorem was Artin's induction theorem, which states that , ''G'', times the trivial character of ''G'' is an integer combination of characters which are each induced from trivial characters of cyclic subgroups of ''G.'' Brauer's theorem removes the factor , ''G'', , but at the expense of expanding the collection of subgroups used. Some years after the proof of Brauer's theorem appeared, J.A. Green showed (in 1955) that no such induction theorem (with integer combinations of characters induced from linear characters) could be proved with a collection of subgroups smaller than the Brauer elementary subgroups. Another result between Artin's induction theorem and Brauer's induction theorem, also due to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Springer-Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second largest academic publisher with 65 staff in 1872.Chronology
". Springer Science+Business Media.
In 1964, Springer expanded its business internationally, o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Inventiones Mathematicae
''Inventiones Mathematicae'' is a mathematical journal published monthly by Springer Science+Business Media. It was established in 1966 and is regarded as one of the most prestigious mathematics journals in the world. The current managing editors are Camillo De Lellis (Institute for Advanced Study, Princeton) and Jean-Benoît Bost (University of Paris-Sud Paris-Sud University (French: ''Université Paris-Sud''), also known as University of Paris — XI (or as Université d'Orsay before 1971), was a French research university distributed among several campuses in the southern suburbs of Paris, in ...). Abstracting and indexing The journal is abstracted and indexed in: References External links *{{Official website, https://www.springer.com/journal/222 Mathematics journals Publications established in 1966 English-language journals Springer Science+Business Media academic journals Monthly journals ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]