Komar Superpotential
   HOME
*





Komar Superpotential
In general relativity, the Komar superpotential, corresponding to the invariance of the Hilbert–Einstein Lagrangian \mathcal_\mathrm = R \sqrt \, \mathrm^4x, is the tensor density: : U^(,\xi) =\nabla^\xi^ = (g^ \nabla_\xi^ - g^ \nabla_\xi^) \, , associated with a vector field \xi=\xi^\partial_, and where \nabla_ denotes covariant derivative with respect to the Levi-Civita connection. The Komar two-form: : \mathcal(,\xi) =U^(,\xi) \mathrmx_= \nabla^\xi^\sqrt\,\mathrmx_ \, , where \mathrmx_= \iota_\mathrmx_= \iota_\iota_\mathrm^4x denotes interior product, generalizes to an arbitrary vector field \xi the so-called above Komar superpotential, which was originally derived for timelike Killing vector fields. Komar superpotential is affected by the anomalous factor problem: In fact, when computed, for example, on the Kerr–Newman solution, produces the correct angular momentum, but just one-half of the expected mass. See also *Superpotential *Einstein–Hilbert action *Ko ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

General Relativity
General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. General relativity generalizes special relativity and refines Newton's law of universal gravitation, providing a unified description of gravity as a geometric property of space and time or four-dimensional spacetime. In particular, the ' is directly related to the energy and momentum of whatever matter and radiation are present. The relation is specified by the Einstein field equations, a system of second order partial differential equations. Newton's law of universal gravitation, which describes classical gravity, can be seen as a prediction of general relativity for the almost flat spacetime geometry around stationary mass distributions. Some predictions of general relativity, however, are beyond Newton's law of universal gravitat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Superpotential
In theoretical physics, the superpotential is a function in supersymmetric quantum mechanics. Given a superpotential, two "partner potentials" are derived that can each serve as a potential in the Schrödinger equation. The partner potentials have the same spectrum, apart from a possible eigenvalue of zero, meaning that the physical systems represented by the two potentials have the same characteristic energies, apart from a possible zero-energy ground state. One-dimensional example Consider a one-dimensional, non-relativistic particle with a two state internal degree of freedom called "spin". (This is not quite the usual notion of spin encountered in nonrelativistic quantum mechanics, because "real" spin applies only to particles in three-dimensional space.) Let ''b'' and its Hermitian adjoint ''b''† signify operators which transform a "spin up" particle into a "spin down" particle and vice versa, respectively. Furthermore, take ''b'' and ''b''† to be normalized such that the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tensors
In mathematics, a tensor is an algebraic object that describes a multilinear relationship between sets of algebraic objects related to a vector space. Tensors may map between different objects such as vectors, scalars, and even other tensors. There are many types of tensors, including scalars and vectors (which are the simplest tensors), dual vectors, multilinear maps between vector spaces, and even some operations such as the dot product. Tensors are defined independent of any basis, although they are often referred to by their components in a basis related to a particular coordinate system. Tensors have become important in physics because they provide a concise mathematical framework for formulating and solving physics problems in areas such as mechanics (stress, elasticity, fluid mechanics, moment of inertia, ...), electrodynamics (electromagnetic tensor, Maxwell tensor, permittivity, magnetic susceptibility, ...), general relativity (stress–energy tensor, curvat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Equations Of Physics
In mathematics, an equation is a formula that expresses the equality of two expressions, by connecting them with the equals sign . The word ''equation'' and its cognates in other languages may have subtly different meanings; for example, in French an ''équation'' is defined as containing one or more variables, while in English, any well-formed formula consisting of two expressions related with an equals sign is an equation. ''Solving'' an equation containing variables consists of determining which values of the variables make the equality true. The variables for which the equation has to be solved are also called unknowns, and the values of the unknowns that satisfy the equality are called solutions of the equation. There are two kinds of equations: identities and conditional equations. An identity is true for all values of the variables. A conditional equation is only true for particular values of the variables. An equation is written as two expressions, connected by an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Riemann Curvature Tensor
In the mathematical field of differential geometry, the Riemann curvature tensor or Riemann–Christoffel tensor (after Bernhard Riemann and Elwin Bruno Christoffel) is the most common way used to express the curvature of Riemannian manifolds. It assigns a tensor to each point of a Riemannian manifold (i.e., it is a tensor field). It is a local invariant of Riemannian metrics which measures the failure of the second covariant derivatives to commute. A Riemannian manifold has zero curvature if and only if it is ''flat'', i.e. locally isometric to the Euclidean space. The curvature tensor can also be defined for any pseudo-Riemannian manifold, or indeed any manifold equipped with an affine connection. It is a central mathematical tool in the theory of general relativity, the modern theory of gravity, and the curvature of spacetime is in principle observable via the geodesic deviation equation. The curvature tensor represents the tidal force experienced by a rigid body moving al ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Christoffel Symbols
In mathematics and physics, the Christoffel symbols are an array of numbers describing a metric connection. The metric connection is a specialization of the affine connection to surfaces or other manifolds endowed with a metric, allowing distances to be measured on that surface. In differential geometry, an affine connection can be defined without reference to a metric, and many additional concepts follow: parallel transport, covariant derivatives, geodesics, etc. also do not require the concept of a metric. However, when a metric is available, these concepts can be directly tied to the "shape" of the manifold itself; that shape is determined by how the tangent space is attached to the cotangent space by the metric tensor. Abstractly, one would say that the manifold has an associated (orthonormal) frame bundle, with each "frame" being a possible choice of a coordinate frame. An invariant metric implies that the structure group of the frame bundle is the orthogonal group . As a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tensor Calculus
In mathematics, tensor calculus, tensor analysis, or Ricci calculus is an extension of vector calculus to tensor fields (tensors that may vary over a manifold, e.g. in spacetime). Developed by Gregorio Ricci-Curbastro and his student Tullio Levi-Civita, it was used by Albert Einstein to develop his General relativity, general theory of relativity. Unlike the infinitesimal calculus, tensor calculus allows presentation of physics equations in a Manifest covariance, form that is independent of the coordinate chart, choice of coordinates on the manifold. Tensor calculus has many applications in physics, engineering and computer science including Elasticity (physics), elasticity, continuum mechanics, electromagnetism (see mathematical descriptions of the electromagnetic field), general relativity (see mathematics of general relativity), quantum field theory, and machine learning. Working with a main proponent of the exterior calculus Elie Cartan, the influential geometer Shiing-Shen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Komar Mass
The Komar mass (named after Arthur Komar) of a system is one of several formal concepts of mass that are used in general relativity. The Komar mass can be defined in any stationary spacetime, which is a spacetime in which all the metric components can be written so that they are independent of time. Alternatively, a stationary spacetime can be defined as a spacetime which possesses a timelike Killing vector field. The following discussion is an expanded and simplified version of the motivational treatment in (Wald, 1984, pg 288). Motivation Consider the Schwarzschild metric. Using the Schwarzschild basis, a frame field for the Schwarzschild metric, one can find that the radial acceleration required to hold a test mass stationary at a Schwarzschild coordinate of ''r'' is: :a^\hat = \frac Because the metric is static, there is a well-defined meaning to "holding a particle stationary". Interpreting this acceleration as being due to a "gravitational force", we can then comp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Kerr–Newman Metric
The Kerr–Newman metric is the most general asymptotically flat, stationary solution of the Einstein–Maxwell equations in general relativity that describes the spacetime geometry in the region surrounding an electrically charged, rotating mass. It generalizes the Kerr metric by taking into account the field energy of an electromagnetic field, in addition to describing rotation. It is one of a large number of various different electrovacuum solutions, that is, of solutions to the Einstein–Maxwell equations which account for the field energy of an electromagnetic field. Such solutions do not include any electric charges other than that associated with the gravitational field, and are thus termed vacuum solutions. This solution has not been especially useful for describing astrophysical phenomena, because observed astronomical objects do not possess an appreciable net electric charge, and the magnetic fields of stars arise through other processes. As a model of realistic black ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Einstein–Hilbert Action
The Einstein–Hilbert action (also referred to as Hilbert action) in general relativity is the action that yields the Einstein field equations through the stationary-action principle. With the metric signature, the gravitational part of the action is given as :S = \int R \sqrt \, \mathrm^4x, where g=\det(g_) is the determinant of the metric tensor matrix, R is the Ricci scalar, and \kappa = 8\pi Gc^ is the Einstein gravitational constant (G is the gravitational constant and c is the speed of light in vacuum). If it converges, the integral is taken over the whole spacetime. If it does not converge, S is no longer well-defined, but a modified definition where one integrates over arbitrarily large, relatively compact domains, still yields the Einstein equation as the Euler–Lagrange equation of the Einstein–Hilbert action. The action was first proposed by David Hilbert in 1915. Discussion Deriving equations of motion from an action has several advantages. First, it allows ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Killing Vector Field
In mathematics, a Killing vector field (often called a Killing field), named after Wilhelm Killing, is a vector field on a Riemannian manifold (or pseudo-Riemannian manifold) that preserves the metric. Killing fields are the infinitesimal generators of isometries; that is, flows generated by Killing fields are continuous isometries of the manifold. More simply, the flow generates a symmetry, in the sense that moving each point of an object the same distance in the direction of the Killing vector will not distort distances on the object. Definition Specifically, a vector field ''X'' is a Killing field if the Lie derivative with respect to ''X'' of the metric ''g'' vanishes: :\mathcal_ g = 0 \,. In terms of the Levi-Civita connection, this is :g\left(\nabla_Y X, Z\right) + g\left(Y, \nabla_Z X\right) = 0 \, for all vectors ''Y'' and ''Z''. In local coordinates, this amounts to the Killing equation :\nabla_\mu X_\nu + \nabla_ X_\mu = 0 \,. This condition is expressed ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Interior Product
In mathematics, the interior product (also known as interior derivative, interior multiplication, inner multiplication, inner derivative, insertion operator, or inner derivation) is a degree −1 (anti)derivation on the exterior algebra of differential forms on a smooth manifold. The interior product, named in opposition to the exterior product, should not be confused with an inner product. The interior product \iota_X \omega is sometimes written as X \mathbin \omega. Definition The interior product is defined to be the contraction of a differential form with a vector field. Thus if X is a vector field on the manifold M, then \iota_X : \Omega^p(M) \to \Omega^(M) is the map which sends a p-form \omega to the (p - 1)-form \iota_X \omega defined by the property that (\iota_X\omega)\left(X_1, \ldots, X_\right) = \omega\left(X, X_1, \ldots, X_\right) for any vector fields X_1, \ldots, X_. The interior product is the unique antiderivation of degree −1 on the exterior alg ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]