Kirby Calculus
   HOME
*





Kirby Calculus
In mathematics, the Kirby calculus in geometric topology, named after Robion Kirby, is a method for modifying framed links in the 3-sphere using a finite set of moves, the Kirby moves. Using four-dimensional Cerf theory, he proved that if ''M'' and ''N'' are 3-manifolds, resulting from Dehn surgery on framed links ''L'' and ''J'' respectively, then they are homeomorphic if and only if ''L'' and ''J'' are related by a sequence of Kirby moves. According to the Lickorish–Wallace theorem any closed orientable 3-manifold is obtained by such surgery on some link in the 3-sphere. Some ambiguity exists in the literature on the precise use of the term "Kirby moves". Different presentations of "Kirby calculus" have a different set of moves and these are sometimes called Kirby moves. Kirby's original formulation involved two kinds of move, the "blow-up" and the "handle slide"; Roger Fenn and Colin Rourke exhibited an equivalent construction in terms of a single move, the Fenn–Rourke ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rolfsen Twist
Rolfsen is a surname derived from a masculine given name Rolf. Notable people with the surname include: *Alf Rolfsen, Norwegian painter and muralist * Christian Lange Rolfsen, Norwegian politician and attorney *Dale Rolfsen * Erik Rolfsen * Harald Rolfsen *Jens Rolfsen *Katie Rolfsen *Nordahl Rolfsen *Ulrik Imtiaz Rolfsen Ulrik Imtiaz Rolfsen (born 4 May 1972) is a Norwegian film director, producer and writer. He is best known for his action drama ''IZZAT'' (2005), his TV series ''TAXI'' (2011) as well as documentary films ''Voluntarily Forced'' (2014) and '' Rec ... {{surname Norwegian-language surnames ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Topology (journal)
''Topology'' was a peer-reviewed mathematical journal covering topology and geometry. It was established in 1962 and was published by Elsevier. The last issue of ''Topology'' appeared in 2009. Pricing dispute On 10 August 2006, after months of unsuccessful negotiations with Elsevier about the price policy of library subscriptions, the entire editorial board of the journal handed in their resignation, effective 31 December 2006. Subsequently, two more issues appeared in 2007 with papers that had been accepted before the resignation of the editors. In early January the former editors instructed Elsevier to remove their names from the website of the journal, but Elsevier refused to comply, justifying their decision by saying that the editorial board should remain on the journal until all of the papers accepted during its tenure had been published. In 2007 the former editors of ''Topology'' announced the launch of the ''Journal of Topology'', published by Oxford University Press ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Inventiones Mathematicae
''Inventiones Mathematicae'' is a mathematical journal published monthly by Springer Science+Business Media. It was established in 1966 and is regarded as one of the most prestigious mathematics journals in the world. The current managing editors are Camillo De Lellis (Institute for Advanced Study, Princeton) and Jean-Benoît Bost (University of Paris-Sud Paris-Sud University (French: ''Université Paris-Sud''), also known as University of Paris — XI (or as Université d'Orsay before 1971), was a French research university distributed among several campuses in the southern suburbs of Paris, in ...). Abstracting and indexing The journal is abstracted and indexed in: References External links *{{Official website, https://www.springer.com/journal/222 Mathematics journals Publications established in 1966 English-language journals Springer Science+Business Media academic journals Monthly journals ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Exotic R4
In mathematics, an exotic \R^4 is a differentiable manifold that is homeomorphic (i.e. shape preserving) but not diffeomorphic (i.e. non smooth) to the Euclidean space \R^4. The first examples were found in 1982 by Michael Freedman and others, by using the contrast between Freedman's theorems about topological 4-manifolds, and Simon Donaldson's theorems about smooth 4-manifolds. There is a continuum of non-diffeomorphic differentiable structures of \R^4, as was shown first by Clifford Taubes. Prior to this construction, non-diffeomorphic smooth structures on spheres exotic sphereswere already known to exist, although the question of the existence of such structures for the particular case of the 4-sphere remained open (and still remains open as of 2022). For any positive integer ''n'' other than 4, there are no exotic smooth structures on \R^n; in other words, if ''n'' ≠ 4 then any smooth manifold homeomorphic to \R^n is diffeomorphic to \R^n. Small exotic R4s An exotic \R^ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Homotopy
In topology, a branch of mathematics, two continuous functions from one topological space to another are called homotopic (from grc, ὁμός "same, similar" and "place") if one can be "continuously deformed" into the other, such a deformation being called a homotopy (, ; , ) between the two functions. A notable use of homotopy is the definition of homotopy groups and cohomotopy groups, important invariants in algebraic topology. In practice, there are technical difficulties in using homotopies with certain spaces. Algebraic topologists work with compactly generated spaces, CW complexes, or spectra. Formal definition Formally, a homotopy between two continuous functions ''f'' and ''g'' from a topological space ''X'' to a topological space ''Y'' is defined to be a continuous function H: X \times ,1\to Y from the product of the space ''X'' with the unit interval , 1to ''Y'' such that H(x,0) = f(x) and H(x,1) = g(x) for all x \in X. If we think of the second ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Knot Theory
In the mathematical field of topology, knot theory is the study of knot (mathematics), mathematical knots. While inspired by knots which appear in daily life, such as those in shoelaces and rope, a mathematical knot differs in that the ends are joined so it cannot be undone, Unknot, the simplest knot being a ring (or "unknot"). In mathematical language, a knot is an embedding of a circle in 3-dimensional Euclidean space, \mathbb^3 (in topology, a circle is not bound to the classical geometric concept, but to all of its homeomorphisms). Two mathematical knots are equivalent if one can be transformed into the other via a deformation of \mathbb^3 upon itself (known as an ambient isotopy); these transformations correspond to manipulations of a knotted string that do not involve cutting it or passing through itself. Knots can be described in various ways. Using different description methods, there may be more than one description of the same knot. For example, a common method of descr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Solid Torus
In mathematics, a solid torus is the topological space formed by sweeping a disk around a circle. It is homeomorphic to the Cartesian product S^1 \times D^2 of the disk and the circle, endowed with the product topology. A standard way to visualize a solid torus is as a toroid, embedded in 3-space. However, it should be distinguished from a torus, which has the same visual appearance: the torus is the two-dimensional space on the boundary of a toroid, while the solid torus includes also the compact interior space enclosed by the torus. Topological properties The solid torus is a connected, compact, orientable 3-dimensional manifold with boundary. The boundary is homeomorphic to S^1 \times S^1, the ordinary torus. Since the disk D^2 is contractible, the solid torus has the homotopy type of a circle, S^1.. Therefore the fundamental group and homology groups are isomorphic to those of the circle: \begin \pi_1\left(S^1 \times D^2\right) &\cong \pi_1\left(S^1\right) \cong \mathbb ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ball (mathematics)
In mathematics, a ball is the solid figure bounded by a ''sphere''; it is also called a solid sphere. It may be a closed ball (including the boundary points that constitute the sphere) or an open ball (excluding them). These concepts are defined not only in three-dimensional Euclidean space but also for lower and higher dimensions, and for metric spaces in general. A ''ball'' in dimensions is called a hyperball or -ball and is bounded by a ''hypersphere'' or ()-sphere. Thus, for example, a ball in the Euclidean plane is the same thing as a disk, the area bounded by a circle. In Euclidean 3-space, a ball is taken to be the volume bounded by a 2-dimensional sphere. In a one-dimensional space, a ball is a line segment. In other contexts, such as in Euclidean geometry and informal use, ''sphere'' is sometimes used to mean ''ball''. In the field of topology the closed n-dimensional ball is often denoted as B^n or D^n while the open n-dimensional ball is \operatorname B^n or \ope ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Attaching Map
In mathematics, an adjunction space (or attaching space) is a common construction in topology where one topological space is attached or "glued" onto another. Specifically, let ''X'' and ''Y'' be topological spaces, and let ''A'' be a subspace of ''Y''. Let ''f'' : ''A'' → ''X'' be a continuous map (called the attaching map). One forms the adjunction space ''X'' ∪''f'' ''Y'' (sometimes also written as ''X'' +''f'' ''Y'') by taking the disjoint union of ''X'' and ''Y'' and identifying ''a'' with ''f''(''a'') for all ''a'' in ''A''. Formally, :X\cup_f Y = (X\sqcup Y) / \sim where the equivalence relation ~ is generated by ''a'' ~ ''f''(''a'') for all ''a'' in ''A'', and the quotient is given the quotient topology. As a set, ''X'' ∪''f'' ''Y'' consists of the disjoint union of ''X'' and (''Y'' − ''A''). The topology, however, is specified by the quotient construction. Intuitively, one may think of ''Y'' as being glued onto ''X'' via the map ''f''. Examples *A common example ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Handle Decomposition
In mathematics, a handle decomposition of an ''m''-manifold ''M'' is a union \emptyset = M_ \subset M_0 \subset M_1 \subset M_2 \subset \dots \subset M_ \subset M_m = M where each M_i is obtained from M_ by the attaching of i-handles. A handle decomposition is to a manifold what a CW complex, CW-decomposition is to a topological space—in many regards the purpose of a handle decomposition is to have a language analogous to CW-complexes, but adapted to the world of smooth manifolds. Thus an ''i''-handle is the smooth analogue of an ''i''-cell. Handle decompositions of manifolds arise naturally via Morse theory. The modification of handle structures is closely linked to Cerf theory. Motivation Consider the standard CW-complex, CW-decomposition of the ''n''-sphere, with one zero cell and a single ''n''-cell. From the point of view of smooth manifolds, this is a degenerate decomposition of the sphere, as there is no natural way to see the smooth structure of S^n from the eyes of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




4-manifold
In mathematics, a 4-manifold is a 4-dimensional topological manifold. A smooth 4-manifold is a 4-manifold with a smooth structure. In dimension four, in marked contrast with lower dimensions, topological and smooth manifolds are quite different. There exist some topological 4-manifolds which admit no smooth structure, and even if there exists a smooth structure, it need not be unique (i.e. there are smooth 4-manifolds which are homeomorphic but not diffeomorphic). 4-manifolds are important in physics because in General Relativity, spacetime is modeled as a pseudo-Riemannian 4-manifold. Topological 4-manifolds The homotopy type of a simply connected compact 4-manifold only depends on the intersection form on the middle dimensional homology. A famous theorem of implies that the homeomorphism type of the manifold only depends on this intersection form, and on a \Z/2\Z invariant called the Kirby–Siebenmann invariant, and moreover that every combination of unimodular form and Ki ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]