Khovanov Homology
   HOME
*





Khovanov Homology
In mathematics, Khovanov homology is an oriented link invariant that arises as the cohomology of a cochain complex. It may be regarded as a categorification of the Jones polynomial. It was developed in the late 1990s by Mikhail Khovanov, then at the University of California, Davis, now at Columbia University. Overview To any link diagram ''D'' representing a link ''L'', we assign the Khovanov bracket ''D''.html" ;"title="/nowiki>''D''">/nowiki>''D''/nowiki>, a cochain complex of graded vector spaces. This is the analogue of the Kauffman bracket in the construction of the Jones polynomial. Next, we normalise ''D''.html" ;"title="/nowiki>''D''">/nowiki>''D''/nowiki> by a series of degree shifts (in the graded vector spaces) and height shifts (in the cochain complex) to obtain a new cochain complex C(''D''). The cohomology of this cochain complex turns out to be an invariant of ''L'', and its graded Euler characteristic is the Jones polynomial of ''L''. Definition This defin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Differential (mathematics)
In mathematics, differential refers to several related notions derived from the early days of calculus, put on a rigorous footing, such as infinitesimal differences and the derivatives of functions. The term is used in various branches of mathematics such as calculus, differential geometry, algebraic geometry and algebraic topology. Introduction The term differential is used nonrigorously in calculus to refer to an infinitesimal ("infinitely small") change in some varying quantity. For example, if ''x'' is a variable, then a change in the value of ''x'' is often denoted Δ''x'' (pronounced ''delta x''). The differential ''dx'' represents an infinitely small change in the variable ''x''. The idea of an infinitely small or infinitely slow change is, intuitively, extremely useful, and there are a number of ways to make the notion mathematically precise. Using calculus, it is possible to relate the infinitely small changes of various variables to each other mathematically using d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lie Algebra
In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an Binary operation, operation called the Lie bracket, an Alternating multilinear map, alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow \mathfrak g, that satisfies the Jacobi identity. The Lie bracket of two vectors x and y is denoted [x,y]. The vector space \mathfrak g together with this operation is a non-associative algebra, meaning that the Lie bracket is not necessarily associative property, associative. Lie algebras are closely related to Lie groups, which are group (mathematics), groups that are also smooth manifolds: any Lie group gives rise to a Lie algebra, which is its tangent space at the identity. Conversely, to any finite-dimensional Lie algebra over real or complex numbers, there is a corresponding connected space, connected Lie group unique up to finite coverings (Lie's third theorem). This Lie group–Lie algebra correspondence, correspondence allows one ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Double Cover (topology)
A covering of a topological space X is a continuous map \pi : E \rightarrow X with special properties. Definition Let X be a topological space. A covering of X is a continuous map : \pi : E \rightarrow X such that there exists a discrete space D and for every x \in X an open neighborhood U \subset X, such that \pi^(U)= \displaystyle \bigsqcup_ V_d and \pi, _:V_d \rightarrow U is a homeomorphism for every d \in D . Often, the notion of a covering is used for the covering space E as well as for the map \pi : E \rightarrow X. The open sets V_ are called sheets, which are uniquely determined up to a homeomorphism if U is connected. For each x \in X the discrete subset \pi^(x) is called the fiber of x. The degree of a covering is the cardinality of the space D. If E is path-connected, then the covering \pi : E \rightarrow X is denoted as a path-connected covering. Examples * For every topological space X there exists the covering \pi:X \rightarrow X with \pi(x)=x, which i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Zoltán Szabó (mathematician)
Zoltán Szabó (born November 24, 1965) is a professor of mathematics at Princeton University known for his work on Heegaard Floer homology. Education and career Szabó received his B.A. from Eötvös Loránd University in Budapest, Hungary in 1990, and he received his Ph.D. from Rutgers University in 1994. Together with Peter Ozsváth, Szabó created Heegaard Floer homology, a homology theory for 3-manifolds. For this contribution to the field of topology, Ozsváth and Szabó were awarded the 2007 Oswald Veblen Prize in Geometry. In 2010, he was elected honorary member of the Hungarian Academy of Sciences The Hungarian Academy of Sciences ( hu, Magyar Tudományos Akadémia, MTA) is the most important and prestigious learned society of Hungary. Its seat is at the bank of the Danube in Budapest, between Széchenyi rakpart and Akadémia utca. Its ma .... Selected publications *. *.Homology for Knots and Links'' American Mathematical Society, (2015) References External ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Peter Ozsváth
Peter Steven Ozsváth (born October 20, 1967) is a professor of mathematics at Princeton University. He created, along with Zoltán Szabó, Heegaard Floer homology, a homology theory for 3-manifolds. Education Ozsváth received his Ph.D. from Princeton in 1994 under the supervision of John Morgan; his dissertation was entitled ''On Blowup Formulas For SU(2) Donaldson Polynomials''. Awards In 2007, Ozsváth was one of the recipients of the Oswald Veblen Prize in Geometry. In 2008 he was named a Guggenheim Fellow. In July 2017, he was a plenary lecturer in the Mathematical Congress of the Americas. He was elected a member of the National Academy of Sciences The National Academy of Sciences (NAS) is a United States nonprofit, non-governmental organization. NAS is part of the National Academies of Sciences, Engineering, and Medicine, along with the National Academy of Engineering (NAE) and the Nati ... in 2018. Selected publications * *Homology for Knots and Links'' Americ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Spectral Sequence
In homological algebra and algebraic topology, a spectral sequence is a means of computing homology groups by taking successive approximations. Spectral sequences are a generalization of exact sequences, and since their introduction by , they have become important computational tools, particularly in algebraic topology, algebraic geometry and homological algebra. Discovery and motivation Motivated by problems in algebraic topology, Jean Leray introduced the notion of a sheaf (mathematics), sheaf and found himself faced with the problem of computing sheaf cohomology. To compute sheaf cohomology, Leray introduced a computational technique now known as the Leray spectral sequence. This gave a relation between cohomology groups of a sheaf and cohomology groups of the direct image of a sheaf, pushforward of the sheaf. The relation involved an infinite process. Leray found that the cohomology groups of the pushforward formed a natural chain complex, so that he could take the cohomolo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Milnor Conjecture (topology)
In knot theory, the Milnor conjecture says that the slice genus of the (p, q) torus knot is :(p-1)(q-1)/2. It is in a similar vein to the Thom conjecture. It was first proved by gauge theoretic methods by Peter Kronheimer and Tomasz Mrowka. Jacob Rasmussen later gave a purely combinatorial proof In mathematics, the term ''combinatorial proof'' is often used to mean either of two types of mathematical proof: * A proof by double counting. A combinatorial identity is proven by counting the number of elements of some carefully chosen set in t ... using Khovanov homology, by means of the s-invariant.. References Geometric topology Knot theory 4-manifolds Conjectures that have been proved {{knottheory-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tomasz Mrowka
Tomasz Mrowka (born September 8, 1961) is an American mathematician specializing in differential geometry and gauge theory. He is the Singer Professor of Mathematics and former head of the Department of Mathematics at the Massachusetts Institute of Technology. Mrowka is the son of Polish mathematician and is married to MIT mathematics professor Gigliola Staffilani. Career A 1983 graduate of the Massachusetts Institute of Technology, he received the PhD from the University of California, Berkeley in 1988 under the direction of Clifford Taubes and Robion Kirby. He joined the MIT mathematics faculty as professor in 1996, following faculty appointments at Stanford University and at the California Institute of Technology (professor 1994–96). At MIT, he was the Simons Professor of Mathematics from 2007–2010. Upon Isadore Singer's retirement in 2010 the name of the chair became the Singer Professor of Mathematics which Mrowka held until 2017. He was named head of the Departm ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Peter Kronheimer
Peter Benedict Kronheimer (born 1963) is a British mathematician, known for his work on gauge theory and its applications to 3- and 4-dimensional topology. He is William Caspar Graustein Professor of Mathematics at Harvard University and former chair of the mathematics department. Kronheimer's early work was on gravitational instantons, in particular the classification of hyperkähler 4-manifolds with asymptotical locally Euclidean geometry (ALE spaces), leading to the papers "The construction of ALE spaces as hyper-Kähler quotients" and "A Torelli-type theorem for gravitational instantons." He and Hiraku Nakajima gave a construction of instantons on ALE spaces generalizing the Atiyah–Hitchin–Drinfeld– Manin construction. This constructions identified these moduli spaces as moduli spaces for certain quivers (see "Yang-Mills instantons on ALE gravitational instantons.") He was the initial recipient of the Oberwolfach prize in 1998 on the basis of some of this work. Kr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Gauge Theory
In physics, a gauge theory is a type of field theory in which the Lagrangian (and hence the dynamics of the system itself) does not change (is invariant) under local transformations according to certain smooth families of operations (Lie groups). The term ''gauge'' refers to any specific mathematical formalism to regulate redundant degrees of freedom in the Lagrangian of a physical system. The transformations between possible gauges, called ''gauge transformations'', form a Lie group—referred to as the ''symmetry group'' or the ''gauge group'' of the theory. Associated with any Lie group is the Lie algebra of group generators. For each group generator there necessarily arises a corresponding field (usually a vector field) called the ''gauge field''. Gauge fields are included in the Lagrangian to ensure its invariance under the local group transformations (called ''gauge invariance''). When such a theory is quantized, the quanta of the gauge fields are called '' gauge bosons ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

3-manifolds
In mathematics, a 3-manifold is a space that locally looks like Euclidean 3-dimensional space. A 3-manifold can be thought of as a possible shape of the universe. Just as a sphere looks like a plane to a small enough observer, all 3-manifolds look like our universe does to a small enough observer. This is made more precise in the definition below. Introduction Definition A topological space ''X'' is a 3-manifold if it is a second-countable Hausdorff space and if every point in ''X'' has a neighbourhood that is homeomorphic to Euclidean 3-space. Mathematical theory of 3-manifolds The topological, piecewise-linear, and smooth categories are all equivalent in three dimensions, so little distinction is made in whether we are dealing with say, topological 3-manifolds, or smooth 3-manifolds. Phenomena in three dimensions can be strikingly different from phenomena in other dimensions, and so there is a prevalence of very specialized techniques that do not generalize to dimensions gre ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]