HOME
*





Katalin Marton
Katalin Marton (9 December 1941 – 13 December 2019) was a Hungarian mathematician, born in Budapest. Education and career Marton obtained her PhD from Eötvös Loránd University in 1965 and worked at the Department of Numerical Mathematics, Central Research Institute for Physics, Budapest from 1965 to 1973. Important influences on her early career were her attendance at the combinatorics seminar organised by Alfréd Rényi from 1966, meeting Roland Dobrushin in Debrecen in 1967 (which led to her visiting the Institute for Problems in Information Transmission in Moscow in 1969), and her collaboration with Imre Csiszár which began in 1972. From 1973 she worked at the Alfréd Rényi Institute of Mathematics of the Hungarian Academy of Sciences in Budapest, visiting the United States in 1977 (for the International Symposium on Information Theory in Ithaca) and in 1979–80 (meeting Robert Gallager at MIT and Robert M. Gray at Stanford). Research interests Marton worked ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Budapest
Budapest (, ; ) is the capital and most populous city of Hungary. It is the ninth-largest city in the European Union by population within city limits and the second-largest city on the Danube river; the city has an estimated population of 1,752,286 over a land area of about . Budapest, which is both a city and county, forms the centre of the Budapest metropolitan area, which has an area of and a population of 3,303,786; it is a primate city, constituting 33% of the population of Hungary. The history of Budapest began when an early Celtic settlement transformed into the Roman town of Aquincum, the capital of Lower Pannonia. The Hungarians arrived in the territory in the late 9th century, but the area was pillaged by the Mongols in 1241–42. Re-established Buda became one of the centres of Renaissance humanist culture by the 15th century. The Battle of Mohács, in 1526, was followed by nearly 150 years of Ottoman rule. After the reconquest of Buda in 1686, the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Grigory Margulis
Grigory Aleksandrovich Margulis (russian: Григо́рий Алекса́ндрович Маргу́лис, first name often given as Gregory, Grigori or Gregori; born February 24, 1946) is a Russian-American mathematician known for his work on lattices in Lie groups, and the introduction of methods from ergodic theory into diophantine approximation. He was awarded a Fields Medal in 1978, a Wolf Prize in Mathematics in 2005, and an Abel Prize in 2020, becoming the fifth mathematician to receive the three prizes. In 1991, he joined the faculty of Yale University, where he is currently the Erastus L. De Forest Professor of Mathematics. Biography Margulis was born to a Russian family of Lithuanian Jewish descent in Moscow, Soviet Union. At age 16 in 1962 he won the silver medal at the International Mathematical Olympiad. He received his PhD in 1970 from the Moscow State University, starting research in ergodic theory under the supervision of Yakov Sinai. Early work with ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Erdős Number
The Erdős number () describes the "collaborative distance" between mathematician Paul Erdős and another person, as measured by authorship of mathematical papers. The same principle has been applied in other fields where a particular individual has collaborated with a large and broad number of peers. Overview Paul Erdős (1913–1996) was an influential Hungarian mathematician who in the latter part of his life spent a great deal of time writing papers with a large number of colleagues, working on solutions to outstanding mathematical problems. He published more papers during his lifetime (at least 1,525) than any other mathematician in history. (Leonhard Euler published more total pages of mathematics but fewer separate papers: about 800.) Erdős spent a large portion of his later life living out of a suitcase, visiting over 500 collaborators around the world. The idea of the Erdős number was originally created by the mathematician's friends as a tribute to his enormous ou ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Terence Tao
Terence Chi-Shen Tao (; born 17 July 1975) is an Australian-American mathematician. He is a professor of mathematics at the University of California, Los Angeles (UCLA), where he holds the James and Carol Collins chair. His research includes topics in harmonic analysis, partial differential equations, algebraic combinatorics, arithmetic combinatorics, geometric combinatorics, probability theory, compressed sensing and analytic number theory. Tao was born to ethnic Chinese immigrant parents and raised in Adelaide. Tao won the Fields Medal in 2006 and won the Royal Medal and Breakthrough Prize in Mathematics in 2014. He is also a 2006 MacArthur Fellow. Tao has been the author or co-author of over three hundred research papers. He is widely regarded as one of the greatest living mathematicians and has been referred to as the "Mozart of mathematics". Life and career Family Tao's parents are first-generation immigrants from Hong Kong to Australia.''Wen Wei Po'', Page A4, 24 Au ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Timothy Gowers
Sir William Timothy Gowers, (; born 20 November 1963) is a British mathematician. He is Professeur titulaire of the Combinatorics chair at the Collège de France, and director of research at the University of Cambridge and Fellow of Trinity College, Cambridge. In 1998, he received the Fields Medal for research connecting the fields of functional analysis and combinatorics. Education Gowers attended King's College School, Cambridge, as a choirboy in the King's College choir, and then Eton College as a King's Scholar, where he was taught mathematics by Norman Routledge. In 1981, Gowers won a gold medal at the International Mathematical Olympiad with a perfect score. He completed his PhD, with a dissertation on ''Symmetric Structures in Banach Spaces'' at Trinity College, Cambridge in 1990, supervised by Béla Bollobás. Career and research After his PhD, Gowers was elected to a Junior Research Fellowship at Trinity College. From 1991 until his return to Cambridge in 1995 he was ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Tom Sanders (mathematician)
Tom Sanders is an English mathematician, working on problems in additive combinatorics at the interface of harmonic analysis and analytic number theory. Education Sanders studied mathematics at the University of Cambridge, where he was awarded a PhD in 2007 for research on arithmetic combinatorics supervised by Timothy Gowers. Career and research He held a Junior Research Fellowship at Christ's College, Cambridge from 2006 until 2011, in addition to visiting fellowships at the Institute for Advanced Study in 2007, the MSRI in 2008, and the Mittag-Leffler Institute in 2009. Since 2011, he has held a Royal Society University Research Fellowship (URF) at the University of Oxford, where he is also a senior research fellow at the Mathematical Institute, and a Tutorial Fellow at St Hugh's College, Oxford. Among other results, he has improved the theorem of Klaus Friedrich Roth on three-term arithmetic progressions, coming close to breaking the so-called logarithmic barrier ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Additive Combinatorics
Additive combinatorics is an area of combinatorics in mathematics. One major area of study in additive combinatorics are ''inverse problems'': given the size of the sumset ''A'' + ''B'' is small, what can we say about the structures of A and B? In the case of the integers, the classical Freiman's theorem provides a partial answer to this question in terms of multi-dimensional arithmetic progressions. Another typical problem is to find a lower bound for , A + B, in terms of , A, and , B, . This can be viewed as an inverse problem with the given information that , A+B, is sufficiently small and the structural conclusion is then of the form that either A or B is the empty set; however, in literature, such problems are sometimes considered to be direct problems as well. Examples of this type include the Erdős–Heilbronn Conjecture (for a restricted sumset) and the Cauchy–Davenport Theorem. The methods used for tackling such questions often come from many differen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cyclic Group
In group theory, a branch of abstract algebra in pure mathematics, a cyclic group or monogenous group is a group, denoted C''n'', that is generated by a single element. That is, it is a set of invertible elements with a single associative binary operation, and it contains an element ''g'' such that every other element of the group may be obtained by repeatedly applying the group operation to ''g'' or its inverse. Each element can be written as an integer power of ''g'' in multiplicative notation, or as an integer multiple of ''g'' in additive notation. This element ''g'' is called a '' generator'' of the group. Every infinite cyclic group is isomorphic to the additive group of Z, the integers. Every finite cyclic group of order ''n'' is isomorphic to the additive group of Z/''n''Z, the integers modulo ''n''. Every cyclic group is an abelian group (meaning that its group operation is commutative), and every finitely generated abelian group ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Imre Z
Imre is a Hungarian masculine first name, which is also in Estonian use, where the corresponding name day is 10 April. It has been suggested that it relates to the name Emeric, Emmerich or Heinrich. Its English equivalents are Emery and Henry. Bearers of the name include the following (who generally held Hungarian nationality, unless otherwise noted): *Imre Antal (1935–2008), pianist *Imre Bajor (1957–2014), actor * Imre Bebek (d. 1395), baron *Imre Bródy (1891–1944), physicist * Imre Bujdosó (b. 1959), Olympic fencer *Imre Csáky (cardinal) (1672–1732), Roman Catholic cardinal * Imre Csermelyi (b. 1988), football player *Imre Cseszneky (1804–1874), agriculturist and patriot *Imre Csiszár (b. 1938), mathematician * Imre Csösz (b. 1969), Olympic judoka *Imre Czobor (1520–1581), Noble and statesman *Imre Czomba (b. 1972), Composer and musician *Imre Deme (b. 1983), football player *Imre Erdődy (1889–1973), Olympic gymnast * Imre Farkas (1879–1976), musician ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Freiman's Theorem
In additive combinatorics, Freiman's theorem is a central result which indicates the approximate structure of sets whose sumset is small. It roughly states that if , A+A, /, A, is small, then A can be contained in a small generalized arithmetic progression. Statement If A is a finite subset of \mathbb with , A+A, \le K, A, , then A is contained in a generalized arithmetic progression of dimension at most d(K) and size at most f(K), A, , where d(K) and f(K) are constants depending only on K. Examples For a finite set A of integers, it is always true that :, A + A, \ge 2, A, -1, with equality precisely when A is an arithmetic progression. More generally, suppose A is a subset of a finite proper generalized arithmetic progression P of dimension d such that , P, \le C, A, for some real C \ge 1. Then , P+P, \le 2^d , P, , so that :, A+A, \le , P+P, \le 2^d , P, \le C2^d, A, . History of Freiman's theorem This result is due to Gregory Freiman (1964, 1966). Much interest i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Additive Combinatorics
Additive combinatorics is an area of combinatorics in mathematics. One major area of study in additive combinatorics are ''inverse problems'': given the size of the sumset ''A'' + ''B'' is small, what can we say about the structures of A and B? In the case of the integers, the classical Freiman's theorem provides a partial answer to this question in terms of multi-dimensional arithmetic progressions. Another typical problem is to find a lower bound for , A + B, in terms of , A, and , B, . This can be viewed as an inverse problem with the given information that , A+B, is sufficiently small and the structural conclusion is then of the form that either A or B is the empty set; however, in literature, such problems are sometimes considered to be direct problems as well. Examples of this type include the Erdős–Heilbronn Conjecture (for a restricted sumset) and the Cauchy–Davenport Theorem. The methods used for tackling such questions often come from many differen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]