Komornik–Loreti Constant
   HOME
*





Komornik–Loreti Constant
In the mathematical theory of Non-integer representation, non-standard positional numeral systems, the Komornik–Loreti constant is a mathematical constant that represents the smallest base ''q'' for which the number 1 has a unique representation, called its ''q''-development. The constant is named after Vilmos Komornik and Paola Loreti, who defined it in 1998. Definition Given a real number ''q'' > 1, the series : x = \sum_^\infty a_n q^ is called the ''q''-expansion, or Non-integer representation, \beta-expansion, of the positive real number ''x'' if, for all n \ge 0, 0 \le a_n \le \lfloor q \rfloor, where \lfloor q \rfloor is the Floor and ceiling functions, floor function and a_n need not be an integer. Any real number x such that 0 \le x \le q \lfloor q \rfloor /(q-1) has such an expansion, as can be found using the greedy algorithm. The special case of x = 1, a_0 = 0, and a_n = 0 or 1 is sometimes called a q-development. a_n = 1 gives the only 2-development. Howev ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Non-integer Representation
A non-integer representation uses non-integer numbers as the radix, or base, of a positional notation, positional numeral system. For a non-integer radix ''β'' > 1, the value of :x = d_n \dots d_2d_1d_0.d_d_\dots d_ is :\begin x &= \beta^nd_n + \cdots + \beta^2d_2 + \beta d_1 + d_0 \\ &\qquad + \beta^d_ + \beta^d_ + \cdots + \beta^d_. \end The numbers ''d''''i'' are non-negative integers less than ''β''. This is also known as a ''β''-expansion, a notion introduced by and first studied in detail by . Every real number has at least one (possibly infinite) ''β''-expansion. The set (mathematics), set of all ''β''-expansions that have a finite representation is a subset of the ring (mathematics), ring Z[''β'', ''β''−1]. There are applications of ''β''-expansions in coding theory and models of quasicrystals (; ). Construction ''β''-expansions are a generalization of decimal expansions. While infinite decimal expansions are not unique (for example, 1.000... = 0.9 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematical Constant
A mathematical constant is a key number whose value is fixed by an unambiguous definition, often referred to by a symbol (e.g., an alphabet letter), or by mathematicians' names to facilitate using it across multiple mathematical problems. Constants arise in many areas of mathematics, with constants such as and occurring in such diverse contexts as geometry, number theory, statistics, and calculus. What it means for a constant to arise "naturally", and what makes a constant "interesting", is ultimately a matter of taste, with some mathematical constants being notable more for historical reasons than for their intrinsic mathematical interest. The more popular constants have been studied throughout the ages and computed to many decimal places. All named mathematical constants are definable numbers, and usually are also computable numbers (Chaitin's constant being a significant exception). Basic mathematical constants These are constants which one is likely to encounter ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Paola Loreti
Paola Loreti is an Italian mathematician, and a professor of mathematical analysis at Sapienza University of Rome. She is known for her research on Fourier analysis, control theory, and non-integer representations. The Komornik–Loreti constant, the smallest non-integer base for which the representation of 1 is unique, is named after her and Vilmos Komornik. Loreti earned a laurea In Italy, the ''laurea'' is the main post-secondary academic degree. The name originally referred literally to the laurel wreath, since ancient times a sign of honor and now worn by Italian students right after their official graduation ceremony ... from Sapienza University in 1984. Her dissertation, ''Programmazione dinamica ed equazione di Bellman'' 'dynamic programming and the Bellman equation">dynamic_programming.html" ;"title="'dynamic programming">'dynamic programming and the Bellman equation''] was supervised by Italo Capuzzo-Dolcetta. With Vilmos Komornik, Loreti is the author of the book '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Floor And Ceiling Functions
In mathematics and computer science, the floor function is the function that takes as input a real number , and gives as output the greatest integer less than or equal to , denoted or . Similarly, the ceiling function maps to the least integer greater than or equal to , denoted or . For example, , , , and . Historically, the floor of has been–and still is–called the integral part or integer part of , often denoted (as well as a variety of other notations). Some authors may define the integral part as if is nonnegative, and otherwise: for example, and . The operation of truncation generalizes this to a specified number of digits: truncation to zero significant digits is the same as the integer part. For an integer, . Notation The ''integral part'' or ''integer part'' of a number ( in the original) was first defined in 1798 by Adrien-Marie Legendre in his proof of the Legendre's formula. Carl Friedrich Gauss introduced the square bracket notation in his ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Greedy Algorithm
A greedy algorithm is any algorithm that follows the problem-solving heuristic of making the locally optimal choice at each stage. In many problems, a greedy strategy does not produce an optimal solution, but a greedy heuristic can yield locally optimal solutions that approximate a globally optimal solution in a reasonable amount of time. For example, a greedy strategy for the travelling salesman problem (which is of high computational complexity) is the following heuristic: "At each step of the journey, visit the nearest unvisited city." This heuristic does not intend to find the best solution, but it terminates in a reasonable number of steps; finding an optimal solution to such a complex problem typically requires unreasonably many steps. In mathematical optimization, greedy algorithms optimally solve combinatorial problems having the properties of matroids and give constant-factor approximations to optimization problems with the submodular structure. Specifics Greedy algorith ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Thue–Morse Sequence
In mathematics, the Thue–Morse sequence, or Prouhet–Thue–Morse sequence, is the binary sequence (an infinite sequence of 0s and 1s) obtained by starting with 0 and successively appending the Boolean complement of the sequence obtained thus far. The first few steps of this procedure yield the strings 0 then 01, 0110, 01101001, 0110100110010110, and so on, which are prefixes of the Thue–Morse sequence. The full sequence begins: :01101001100101101001011001101001.... The sequence is named after Axel Thue and Marston Morse. Definition There are several equivalent ways of defining the Thue–Morse sequence. Direct definition To compute the ''n''th element ''tn'', write the number ''n'' in binary. If the number of ones in this binary expansion is odd then ''tn'' = 1, if even then ''tn'' = 0. For this reason John H. Conway ''et al''. called numbers ''n'' satisfying ''tn'' = 1 ''odious'' (for ''odd'') numbers and numbers for which ''tn''&n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Transcendental Number
In mathematics, a transcendental number is a number that is not algebraic—that is, not the root of a non-zero polynomial of finite degree with rational coefficients. The best known transcendental numbers are and . Though only a few classes of transcendental numbers are known—partly because it can be extremely difficult to show that a given number is transcendental—transcendental numbers are not rare. Indeed, almost all real and complex numbers are transcendental, since the algebraic numbers comprise a countable set, while the set of real numbers and the set of complex numbers are both uncountable sets, and therefore larger than any countable set. All transcendental real numbers (also known as real transcendental numbers or transcendental irrational numbers) are irrational numbers, since all rational numbers are algebraic. The converse is not true: not all irrational numbers are transcendental. Hence, the set of real numbers consists of non-overlapping rational, algebrai ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Euler-Mascheroni Constant
Euler's constant (sometimes also called the Euler–Mascheroni constant) is a mathematical constant usually denoted by the lowercase Greek letter gamma (). It is defined as the limiting difference between the harmonic series and the natural logarithm, denoted here by \log: :\begin \gamma &= \lim_\left(-\log n + \sum_^n \frac1\right)\\ px&=\int_1^\infty\left(-\frac1x+\frac1\right)\,dx. \end Here, \lfloor x\rfloor represents the floor function. The numerical value of Euler's constant, to 50 decimal places, is: :   History The constant first appeared in a 1734 paper by the Swiss mathematician Leonhard Euler, titled ''De Progressionibus harmonicis observationes'' (Eneström Index 43). Euler used the notations and for the constant. In 1790, Italian mathematician Lorenzo Mascheroni used the notations and for the constant. The notation appears nowhere in the writings of either Euler or Mascheroni, and was chosen at a later time perhaps because of the constant's connection ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fibonacci Word
A Fibonacci word is a specific sequence of binary digits (or symbols from any two-letter alphabet). The Fibonacci word is formed by repeated concatenation in the same way that the Fibonacci numbers are formed by repeated addition. It is a paradigmatic example of a Sturmian word and specifically, a morphic word. The name "Fibonacci word" has also been used to refer to the members of a formal language ''L'' consisting of strings of zeros and ones with no two repeated ones. Any prefix of the specific Fibonacci word belongs to ''L'', but so do many other strings. ''L'' has a Fibonacci number of members of each possible length. Definition Let S_0 be "0" and S_1 be "01". Now S_n = S_S_ (the concatenation of the previous sequence and the one before that). The infinite Fibonacci word is the limit S_, that is, the (unique) infinite sequence that contains each S_n, for finite n, as a prefix. Enumerating items from the above definition produces: S_0    0 S_1    ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Prouhet–Thue–Morse Constant
In mathematics, the Prouhet–Thue–Morse constant, named for Eugène Prouhet, Axel Thue, and Marston Morse, is the number—denoted by —whose binary expansion 0.01101001100101101001011001101001... is given by the Thue–Morse sequence. That is, : \tau = \sum_^ \frac = 0.412454033640 \ldots where is the element of the Prouhet–Thue–Morse sequence. Other representations The Prouhet–Thue–Morse constant can also be expressed, without using , as an infinite product, : \tau = \frac\left -\prod_^\left(1-\frac\right)\right This formula is obtained by substituting ''x'' = 1/2 into generating series for : F(x) = \sum_^ (-1)^ x^n = \prod_^ ( 1 - x^ ) The continued fraction expansion of the constant is ; 2, 2, 2, 1, 4, 3, 5, 2, 1, 4, 2, 1, 5, 44, 1, 4, 1, 2, 4, 1, … Yann Bugeaud and Martine Queffélec showed that infinitely many partial quotients of this continued fraction are 4 or 5, and infinitely many partial quotients are greater than or equal to 50. Transcendence ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]