Kleene–Brouwer Order
   HOME
*





Kleene–Brouwer Order
In descriptive set theory, the Kleene–Brouwer order or Lusin–Sierpiński order is a linear order on finite sequences over some linearly ordered set (X, <), that differs from the more commonly used in how it handles the case when one sequence is a of the other. In the Kleene–Brouwer order, the prefix is later than the longer sequence containing it, rather than earlier. The Kleene–Brouwer order generalizes the notion of a from finite trees to trees that are not necessarily finite. For trees over a well-ordered set, the Kleene–Brouwer order is i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Descriptive Set Theory
In mathematical logic, descriptive set theory (DST) is the study of certain classes of "well-behaved" subsets of the real line and other Polish spaces. As well as being one of the primary areas of research in set theory, it has applications to other areas of mathematics such as functional analysis, ergodic theory, the study of operator algebras and group actions, and mathematical logic. Polish spaces Descriptive set theory begins with the study of Polish spaces and their Borel sets. A Polish space is a second-countable topological space that is metrizable with a complete metric. Heuristically, it is a complete separable metric space whose metric has been "forgotten". Examples include the real line \mathbb, the Baire space \mathcal, the Cantor space \mathcal, and the Hilbert cube I^. Universality properties The class of Polish spaces has several universality properties, which show that there is no loss of generality in considering Polish spaces of certain restricted form ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Well-founded Relation
In mathematics, a binary relation ''R'' is called well-founded (or wellfounded) on a class ''X'' if every non-empty subset ''S'' ⊆ ''X'' has a minimal element with respect to ''R'', that is, an element ''m'' not related by ''s R m'' (for instance, "''s'' is not smaller than ''m''") for any ''s'' ∈ ''S''. In other words, a relation is well founded if :(\forall S \subseteq X)\; \neq \emptyset \implies (\exists m \in S) (\forall s \in S) \lnot(s \mathrel m) Some authors include an extra condition that ''R'' is set-like, i.e., that the elements less than any given element form a set. Equivalently, assuming the axiom of dependent choice, a relation is well-founded when it contains no infinite descending chains, which can be proved when there is no infinite sequence ''x''0, ''x''1, ''x''2, ... of elements of ''X'' such that ''x''''n''+1 ''R'' ''x''n for every natural number ''n''. In order theory, a partial order is called well-founded ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Descriptive Set Theory
In mathematical logic, descriptive set theory (DST) is the study of certain classes of "well-behaved" subsets of the real line and other Polish spaces. As well as being one of the primary areas of research in set theory, it has applications to other areas of mathematics such as functional analysis, ergodic theory, the study of operator algebras and group actions, and mathematical logic. Polish spaces Descriptive set theory begins with the study of Polish spaces and their Borel sets. A Polish space is a second-countable topological space that is metrizable with a complete metric. Heuristically, it is a complete separable metric space whose metric has been "forgotten". Examples include the real line \mathbb, the Baire space \mathcal, the Cantor space \mathcal, and the Hilbert cube I^. Universality properties The class of Polish spaces has several universality properties, which show that there is no loss of generality in considering Polish spaces of certain restricted form ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Yiannis N
Yannis, Yiannis, or Giannis (Γιάννης) is a common Greek given name, a variant of ''John'' (Hebrew) meaning "God is gracious." In formal Greek (e.g. all government documents and birth certificates) the name exists only as Ioannis (Ιωάννης). Variants include ''Yannis'' (Also Janni), ''Iannis'', ''Yannakis'', ''Yanis'', and the rare ''Yannos'', usually found in the Peloponnese and Cyprus. Feminine forms are Γιάννα ( Yianna, Gianna) and Ιωάννα (Ioanna) which is the formal variant used in formal/government documents. Yannis may refer to: * Abu'l-Fath Yanis, Fatimid vizier * Giannis Agouris, Greek writer and journalist * Ioannis Amanatidis, Greek footballer *Yannis Anastasiou, Greek footballer *Yiannis Andrianopoulos, Greek footballer * Giannis Antetokounmpo, Greek basketball player *Giannis Apostolidis, Greek footballer * Yiannis Arabatzis, Greek goalkeeper *Yannis Bakos, economist *Ioannis Banias (1939–2012), Greek politician *Yannis Behrakis, Greek ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Recursive Ordinal
In mathematics, specifically computability and set theory, an ordinal \alpha is said to be computable or recursive if there is a computable well-ordering of a subset of the natural numbers having the order type \alpha. It is easy to check that \omega is computable. The successor of a computable ordinal is computable, and the set of all computable ordinals is closed downwards. The supremum of all computable ordinals is called the Church–Kleene ordinal, the first nonrecursive ordinal, and denoted by \omega^_1. The Church–Kleene ordinal is a limit ordinal. An ordinal is computable if and only if it is smaller than \omega^_1. Since there are only countably many computable relations, there are also only countably many computable ordinals. Thus, \omega^_1 is countable. The computable ordinals are exactly the ordinals that have an ordinal notation in Kleene's \mathcal. See also *Arithmetical hierarchy *Large countable ordinal *Ordinal analysis *Ordinal notation References * ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ordinal Number
In set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals (first, second, th, etc.) aimed to extend enumeration to infinite sets. A finite set can be enumerated by successively labeling each element with the least natural number that has not been previously used. To extend this process to various infinite sets, ordinal numbers are defined more generally as linearly ordered labels that include the natural numbers and have the property that every set of ordinals has a least element (this is needed for giving a meaning to "the least unused element"). This more general definition allows us to define an ordinal number \omega that is greater than every natural number, along with ordinal numbers \omega + 1, \omega + 2, etc., which are even greater than \omega. A linear order such that every subset has a least element is called a well-order. The axiom of choice implies that every set can be well-ordered, and given two well-ordered sets, one is isomorphic to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Higher-order Function
In mathematics and computer science, a higher-order function (HOF) is a function that does at least one of the following: * takes one or more functions as arguments (i.e. a procedural parameter, which is a parameter of a procedure that is itself a procedure), * returns a function as its result. All other functions are ''first-order functions''. In mathematics higher-order functions are also termed ''operators'' or '' functionals''. The differential operator in calculus is a common example, since it maps a function to its derivative, also a function. Higher-order functions should not be confused with other uses of the word "functor" throughout mathematics, see Functor (other). In the untyped lambda calculus, all functions are higher-order; in a typed lambda calculus, from which most functional programming languages are derived, higher-order functions that take one function as argument are values with types of the form (\tau_1\to\tau_2)\to\tau_3. General examples * ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Computable Function
Computable functions are the basic objects of study in computability theory. Computable functions are the formalized analogue of the intuitive notion of algorithms, in the sense that a function is computable if there exists an algorithm that can do the job of the function, i.e. given an input of the function domain it can return the corresponding output. Computable functions are used to discuss computability without referring to any concrete model of computation such as Turing machines or register machines. Any definition, however, must make reference to some specific model of computation but all valid definitions yield the same class of functions. Particular models of computability that give rise to the set of computable functions are the Turing-computable functions and the general recursive functions. Before the precise definition of computable function, mathematicians often used the informal term ''effectively calculable''. This term has since come to be identified with the com ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Computation Tree
A computation tree is a representation for the computation steps of a non-deterministic Turing machine on a specified input.. A computation tree is a rooted tree of nodes and edges. Each node in the tree represents a single computational state, while each edge represents a transition to the next possible computation. The number of nodes of the tree is the size of the tree and the length of the path from the root to a given node is the depth of the node. The largest depth of an output node is the depth of the tree. The leaves of the tree are called output nodes. In a computation tree for a decision problem, each output node is labeled Yes or No. If a tree, T, with an input space X, if x \in X and the path for x ends in node labeled yes, then the input x is accepted. Else it is rejected. The depth of the computation tree for a given input is the computation time for the Turing machine on that input. Computation trees have also been used to study the computational complexity of pro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Recursion Theory
Computability theory, also known as recursion theory, is a branch of mathematical logic, computer science, and the theory of computation that originated in the 1930s with the study of computable functions and Turing degrees. The field has since expanded to include the study of generalized computability and definability. In these areas, computability theory overlaps with proof theory and effective descriptive set theory. Basic questions addressed by computability theory include: * What does it mean for a function on the natural numbers to be computable? * How can noncomputable functions be classified into a hierarchy based on their level of noncomputability? Although there is considerable overlap in terms of knowledge and methods, mathematical computability theorists study the theory of relative computability, reducibility notions, and degree structures; those in the computer science field focus on the theory of subrecursive hierarchies, formal methods, and formal languages. I ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Well-ordered
In mathematics, a well-order (or well-ordering or well-order relation) on a set ''S'' is a total order on ''S'' with the property that every non-empty subset of ''S'' has a least element in this ordering. The set ''S'' together with the well-order relation is then called a well-ordered set. In some academic articles and textbooks these terms are instead written as wellorder, wellordered, and wellordering or well order, well ordered, and well ordering. Every non-empty well-ordered set has a least element. Every element ''s'' of a well-ordered set, except a possible greatest element, has a unique successor (next element), namely the least element of the subset of all elements greater than ''s''. There may be elements besides the least element which have no predecessor (see below for an example). A well-ordered set ''S'' contains for every subset ''T'' with an upper bound a least upper bound, namely the least element of the subset of all upper bounds of ''T'' in ''S''. If ≤ is a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Linear Order
In mathematics, a total or linear order is a partial order in which any two elements are comparable. That is, a total order is a binary relation \leq on some set X, which satisfies the following for all a, b and c in X: # a \leq a ( reflexive). # If a \leq b and b \leq c then a \leq c ( transitive). # If a \leq b and b \leq a then a = b ( antisymmetric). # a \leq b or b \leq a (strongly connected, formerly called total). Total orders are sometimes also called simple, connex, or full orders. A set equipped with a total order is a totally ordered set; the terms simply ordered set, linearly ordered set, and loset are also used. The term ''chain'' is sometimes defined as a synonym of ''totally ordered set'', but refers generally to some sort of totally ordered subsets of a given partially ordered set. An extension of a given partial order to a total order is called a linear extension of that partial order. Strict and non-strict total orders A on a set X is a strict partial or ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]