HOME
*





Kirillov Model
In mathematics, the Kirillov model, studied by , is a realization of a representation of ''GL''2 over a local field on a space of functions on the local field. If ''G'' is the algebraic group ''GL''2 and F is a non-Archimedean local field, and τ is a fixed nontrivial character of the additive group of F and π is an irreducible representation of ''G''(F), then the Kirillov model for π is a representation π on a space of locally constant functions ''f'' on F* with compact support in F such that : \pi\left(\begina & b \\ 0 & 1\end\right)f(x) = \tau(bx)f(ax). showed that an irreducible representation of dimension greater than 1 has an essentially unique Kirillov model. Over a local field, the space of functions with compact support in F* has codimension 0, 1, or 2 in the Kirillov model, depending on whether the irreducible representation is cuspidal, special, or principal. The Whittaker model can be constructed from the Kirillov model, by defining the image ''W''ξ of a vecto ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Local Field
In mathematics, a field ''K'' is called a (non-Archimedean) local field if it is complete with respect to a topology induced by a discrete valuation ''v'' and if its residue field ''k'' is finite. Equivalently, a local field is a locally compact topological field with respect to a non-discrete topology. Sometimes, real numbers R, and the complex numbers C (with their standard topologies) are also defined to be local fields; this is the convention we will adopt below. Given a local field, the valuation defined on it can be of either of two types, each one corresponds to one of the two basic types of local fields: those in which the valuation is Archimedean and those in which it is not. In the first case, one calls the local field an Archimedean local field, in the second case, one calls it a non-Archimedean local field. Local fields arise naturally in number theory as completions of global fields. While Archimedean local fields have been quite well known in mathematics for at lea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraic Group
In mathematics, an algebraic group is an algebraic variety endowed with a group structure which is compatible with its structure as an algebraic variety. Thus the study of algebraic groups belongs both to algebraic geometry and group theory. Many groups of geometric transformations are algebraic groups; for example, orthogonal groups, general linear groups, projective groups, Euclidean groups, etc. Many matrix groups are also algebraic. Other algebraic groups occur naturally in algebraic geometry, such as elliptic curves and Jacobian varieties. An important class of algebraic groups is given by the affine algebraic groups, those whose underlying algebraic variety is an affine variety; they are exactly the algebraic subgroups of the general linear group, and are therefore also called ''linear algebraic groups''. Another class is formed by the abelian varieties, which are the algebraic groups whose underlying variety is a projective variety. Chevalley's structure theorem states ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Irreducible Representation
In mathematics, specifically in the representation theory of groups and algebras, an irreducible representation (\rho, V) or irrep of an algebraic structure A is a nonzero representation that has no proper nontrivial subrepresentation (\rho, _W,W), with W \subset V closed under the action of \. Every finite-dimensional unitary representation on a Hilbert space V is the direct sum of irreducible representations. Irreducible representations are always indecomposable (i.e. cannot be decomposed further into a direct sum of representations), but converse may not hold, e.g. the two-dimensional representation of the real numbers acting by upper triangular unipotent matrices is indecomposable but reducible. History Group representation theory was generalized by Richard Brauer from the 1940s to give modular representation theory, in which the matrix operators act on a vector space over a field K of arbitrary characteristic, rather than a vector space over the field of real numbers or o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Whittaker Model
In representation theory, a branch of mathematics, the Whittaker model is a realization of a representation of a reductive algebraic group such as ''GL''2 over a finite or local or global field on a space of functions on the group. It is named after E. T. Whittaker even though he never worked in this area, because pointed out that for the group SL2(R) some of the functions involved in the representation are Whittaker functions. Irreducible representations without a Whittaker model are sometimes called "degenerate", and those with a Whittaker model are sometimes called "generic". The representation ''θ''10 of the symplectic group Sp4 is the simplest example of a degenerate representation. Whittaker models for GL2 If ''G'' is the algebraic group ''GL''2 and F is a local field, and is a fixed non-trivial character of the additive group of F and is an irreducible representation of a general linear group ''G''(F), then the Whittaker model for is a representation on a space of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mirabolic Subgroup
In mathematics, a mirabolic subgroup of the general linear group GL''n''(''k'') is a subgroup consisting of automorphisms fixing a given non-zero vector in ''k''''n''. Mirabolic subgroups were introduced by . The image of a mirabolic subgroup in the projective general linear group is a parabolic subgroup consisting of all elements fixing a given point of projective space. The word "mirabolic" is a portmanteau of "miraculous parabolic". As an algebraic group, a mirabolic subgroup is the semidirect product of a vector space with its group of automorphisms, and such groups are called mirabolic groups. The mirabolic subgroup is used to define the Kirillov model of a representation of the general linear group. As an example, the group of all matrices of the form \begin a & b \\ 0 & 1 \end where is a nonzero element of the field Field may refer to: Expanses of open ground * Field (agriculture), an area of land used for agricultural purposes * Airfield, an aerodrome that lacks the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Springer-Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second largest academic publisher with 65 staff in 1872.Chronology
". Springer Science+Business Media.
In 1964, Springer expanded its business internationally, o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Representation Theory
Representation theory is a branch of mathematics that studies abstract algebraic structures by ''representing'' their elements as linear transformations of vector spaces, and studies modules over these abstract algebraic structures. In essence, a representation makes an abstract algebraic object more concrete by describing its elements by matrices and their algebraic operations (for example, matrix addition, matrix multiplication). The theory of matrices and linear operators is well-understood, so representations of more abstract objects in terms of familiar linear algebra objects helps glean properties and sometimes simplify calculations on more abstract theories. The algebraic objects amenable to such a description include groups, associative algebras and Lie algebras. The most prominent of these (and historically the first) is the representation theory of groups, in which elements of a group are represented by invertible matrices in such a way that the group operation i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Automorphic Forms
In harmonic analysis and number theory, an automorphic form is a well-behaved function from a topological group ''G'' to the complex numbers (or complex vector space) which is invariant under the action of a discrete subgroup \Gamma \subset G of the topological group. Automorphic forms are a generalization of the idea of periodic functions in Euclidean space to general topological groups. Modular forms are holomorphic automorphic forms defined over the groups SL(2, R) or PSL(2, R) with the discrete subgroup being the modular group, or one of its congruence subgroups; in this sense the theory of automorphic forms is an extension of the theory of modular forms. More generally, one can use the adelic approach as a way of dealing with the whole family of congruence subgroups at once. From this point of view, an automorphic form over the group ''G''(A''F''), for an algebraic group ''G'' and an algebraic number field ''F'', is a complex-valued function on ''G''(A''F'') that is left ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]