Khintchine Inequality
   HOME
*





Khintchine Inequality
In mathematics, the Khintchine inequality, named after Aleksandr Khinchin and spelled in multiple ways in the Latin alphabet, is a theorem from probability, and is also frequently used in mathematical analysis, analysis. Heuristically, it says that if we pick N complex numbers x_1,\dots,x_N \in\mathbb, and add them together each multiplied by a random sign \pm 1 , then the expected value of the sum's absolute value, modulus, or the modulus it will be closest to on average, will be not too far off from \sqrt. Statement Let \_^N be i.i.d. random variables with P(\varepsilon_n=\pm1)=\frac12 for n=1,\ldots, N, i.e., a sequence with Rademacher distribution. Let 0 and let x_1,\ldots,x_N\in \mathbb. Then : A_p \left( \sum_^N , x_n, ^2 \right)^ \leq \left(\operatorname \left, \sum_^N \varepsilon_n x_n\^p \right)^ \leq B_p \left(\sum_^N , x_n, ^2\right)^ for some constants A_p,B_p>0 depending only on p (see E ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting poin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Probability Theory
Probability theory is the branch of mathematics concerned with probability. Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expressing it through a set of axioms of probability, axioms. Typically these axioms formalise probability in terms of a probability space, which assigns a measure (mathematics), measure taking values between 0 and 1, termed the probability measure, to a set of outcomes called the sample space. Any specified subset of the sample space is called an event (probability theory), event. Central subjects in probability theory include discrete and continuous random variables, probability distributions, and stochastic processes (which provide mathematical abstractions of determinism, non-deterministic or uncertain processes or measured Quantity, quantities that may either be single occurrences or evolve over time in a random fashion). Although it is not possible to perfectly p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fedor Nazarov
Fedor (Fedya) L'vovich Nazarov (russian: Фёдор (Фе́дя) Льво́вич Наза́ров; born 1967) is a Russian mathematician working in the United States. He has done research in mathematical analysis and its applications, in particular in functional analysis and classical analysis (including harmonic analysis, Fourier analysis, and complex analytic functions). Biography Fedor Nazarov received his Ph.D. from St Petersburg University in 1993, with Victor Petrovich Havin as advisor. Before his Ph.D. studies, Nazarov received the Gold Medal and Special prize at the International Mathematics Olympiad in 1984. Nazarov worked at Michigan State University in East Lansing from 1995 to 2007 and at the University of Wisconsin–Madison from 2007 to 2011. Since 2011, he has been a full professor of Mathematics at Kent State University. Awards Nazarov was awarded the Salem Prize in 1999 "for his work in harmonic analysis, in particular, the uncertainty principle, a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Thomas Wolff
Thomas Hartwig Wolff (July 14, 1954, New York City – July 31, 2000, Kern County) was a noted mathematician, working primarily in the fields of harmonic analysis, complex analysis, and partial differential equations. As an undergraduate at Harvard University he regularly played poker with his classmate Bill Gates. While a graduate student at the University of California, Berkeley from 1976 to 1979, under the direction of Donald Sarason, he obtained a new proof of the corona theorem, a famously difficult theorem in complex analysis. He was made Professor of Mathematics at Caltech in 1986, and was there from 1988–1992 and from 1995 to his death in a car accident in 2000. He also held positions at the University of Washington, University of Chicago, New York University, and University of California, Berkeley. He received the Salem Prize in 1985 and the Bôcher Memorial Prize in 1999, for his contributions to analysis and particularly to the Kakeya conjecture. He was an Invite ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Burkholder-Davis-Gundy Inequality
In mathematics, quadratic variation is used in the analysis of stochastic process In probability theory and related fields, a stochastic () or random process is a mathematical object usually defined as a family of random variables. Stochastic processes are widely used as mathematical models of systems and phenomena that appea ...es such as Wiener process, Brownian motion and other Martingale (probability theory), martingales. Quadratic variation is just one kind of Total variation, variation of a process. Definition Suppose that X_t is a real-valued stochastic process defined on a probability space (\Omega,\mathcal,\mathbb) and with time index t ranging over the non-negative real numbers. Its quadratic variation is the process, written as [X]_t, defined as :[X]_t=\lim_\sum_^n(X_-X_)^2 where P ranges over partition of an interval, partitions of the interval [0,t] and the norm of the partition P is the mesh (mathematics), mesh. This limit, if it exists, is defined using Converge ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Marcinkiewicz–Zygmund Inequality
In mathematics, the Marcinkiewicz–Zygmund inequality, named after Józef Marcinkiewicz and Antoni Zygmund, gives relations between moments of a collection of independent random variables. It is a generalization of the rule for the sum of variances of independent random variables to moments of arbitrary order. It is a special case of the Burkholder-Davis-Gundy inequality in the case of discrete-time martingales. Statement of the inequality Theorem J. Marcinkiewicz and A. Zygmund. Sur les fonctions indépendantes. ''Fund. Math.'', 28:60–90, 1937. Reprinted in Józef Marcinkiewicz, ''Collected papers'', edited by Antoni Zygmund, Panstwowe Wydawnictwo Naukowe, Warsaw, 1964, pp. 233–259. Yuan Shih Chow and Henry Teicher. ''Probability theory. Independence, interchangeability, martingales''. Springer-Verlag, New York, second edition, 1988. If \textstyle X_, \textstyle i=1,\ldots,n, are independent random variables such that \textstyle E\left( X_\right) =0 and \text ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Operator Norm
In mathematics, the operator norm measures the "size" of certain linear operators by assigning each a real number called its . Formally, it is a norm defined on the space of bounded linear operators between two given normed vector spaces. Introduction and definition Given two normed vector spaces V and W (over the same base field, either the real numbers \R or the complex numbers \Complex), a linear map A : V \to W is continuous if and only if there exists a real number c such that \, Av\, \leq c \, v\, \quad \mbox v\in V. The norm on the left is the one in W and the norm on the right is the one in V. Intuitively, the continuous operator A never increases the length of any vector by more than a factor of c. Thus the image of a bounded set under a continuous operator is also bounded. Because of this property, the continuous linear operators are also known as bounded operators. In order to "measure the size" of A, one can take the infimum of the numbers c such that the abo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lp Space
In mathematics, the spaces are function spaces defined using a natural generalization of the -norm for finite-dimensional vector spaces. They are sometimes called Lebesgue spaces, named after Henri Lebesgue , although according to the Bourbaki group they were first introduced by Frigyes Riesz . spaces form an important class of Banach spaces in functional analysis, and of topological vector spaces. Because of their key role in the mathematical analysis of measure and probability spaces, Lebesgue spaces are used also in the theoretical discussion of problems in physics, statistics, economics, finance, engineering, and other disciplines. Applications Statistics In statistics, measures of central tendency and statistical dispersion, such as the mean, median, and standard deviation, are defined in terms of metrics, and measures of central tendency can be characterized as solutions to variational problems. In penalized regression, "L1 penalty" and "L2 penalty" refer ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Linear Operator
In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a Map (mathematics), mapping V \to W between two vector spaces that preserves the operations of vector addition and scalar multiplication. The same names and the same definition are also used for the more general case of module (mathematics), modules over a ring (mathematics), ring; see Module homomorphism. If a linear map is a bijection then it is called a . In the case where V = W, a linear map is called a (linear) ''endomorphism''. Sometimes the term refers to this case, but the term "linear operator" can have different meanings for different conventions: for example, it can be used to emphasize that V and W are Real number, real vector spaces (not necessarily with V = W), or it can be used to emphasize that V is a function space, which is a common convention in functional analysis. Some ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Normal Distribution
In statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is : f(x) = \frac e^ The parameter \mu is the mean or expectation of the distribution (and also its median and mode), while the parameter \sigma is its standard deviation. The variance of the distribution is \sigma^2. A random variable with a Gaussian distribution is said to be normally distributed, and is called a normal deviate. Normal distributions are important in statistics and are often used in the natural and social sciences to represent real-valued random variables whose distributions are not known. Their importance is partly due to the central limit theorem. It states that, under some conditions, the average of many samples (observations) of a random variable with finite mean and variance is itself a random variable—whose distribution converges to a normal dist ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Aleksandr Khinchin
Aleksandr Yakovlevich Khinchin (russian: Алекса́ндр Я́ковлевич Хи́нчин, french: Alexandre Khintchine; July 19, 1894 – November 18, 1959) was a Soviet mathematician and one of the most significant contributors to the Soviet school of probability theory. Life and career He was born in the village of Kondrovo, Kaluga Governorate, Russian Empire. While studying at Moscow State University, he became one of the first followers of the famous Luzin school. Khinchin graduated from the university in 1916 and six years later he became a full professor there, retaining that position until his death. Khinchin's early works focused on real analysis. Later he applied methods from the metric theory of functions to problems in probability theory and number theory. He became one of the founders of modern probability theory, discovering the law of the iterated logarithm in 1924, achieving important results in the field of limit theorems, giving a definition of a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]