Karatsuba Multiplication
The Karatsuba algorithm is a fast multiplication algorithm. It was discovered by Anatoly Karatsuba in 1960 and published in 1962. Knuth D.E. (1969) ''The Art of Computer Programming. v.2.'' Addison-Wesley Publ.Co., 724 pp. It is a divide-and-conquer algorithm that reduces the multiplication of two ''n''-digit numbers to three multiplications of ''n''/2-digit numbers and, by repeating this reduction, to at most n^\approx n^ single-digit multiplications. It is therefore asymptotically faster than the traditional algorithm, which performs n^2 single-digit products. For example, the traditional algorithm requires (210)2 = 1,048,576 single-digit multiplications to multiply two 1024-digit numbers (''n'' = 1024 = 210), whereas the Karatsuba algorithm requires 310 = 59,049 thus being ~17.758 times faster. The Karatsuba algorithm was the first multiplication algorithm asymptotically faster than the quadratic "grade school" algorithm. The Toom–Cook algorithm (1963) is a fas ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Karatsuba Multiplication
The Karatsuba algorithm is a fast multiplication algorithm. It was discovered by Anatoly Karatsuba in 1960 and published in 1962. Knuth D.E. (1969) ''The Art of Computer Programming. v.2.'' Addison-Wesley Publ.Co., 724 pp. It is a divide-and-conquer algorithm that reduces the multiplication of two ''n''-digit numbers to three multiplications of ''n''/2-digit numbers and, by repeating this reduction, to at most n^\approx n^ single-digit multiplications. It is therefore asymptotically faster than the traditional algorithm, which performs n^2 single-digit products. For example, the traditional algorithm requires (210)2 = 1,048,576 single-digit multiplications to multiply two 1024-digit numbers (''n'' = 1024 = 210), whereas the Karatsuba algorithm requires 310 = 59,049 thus being ~17.758 times faster. The Karatsuba algorithm was the first multiplication algorithm asymptotically faster than the quadratic "grade school" algorithm. The Toom–Cook algorithm (1963) is a fas ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Yuri Petrovich Ofman
Yuri Petrovich Ofman (russian: Ю́рий Петро́вич Офман, born 1939) is a Russian mathematician who works in computational complexity theory. He obtained his Doctorate from Moscow State University, where he was advised by Andrey Kolmogorov. He did important early work on parallel algorithms for prefix sum In computer science, the prefix sum, cumulative sum, inclusive scan, or simply scan of a sequence of numbers is a second sequence of numbers , the sums of prefixes ( running totals) of the input sequence: : : : :... For instance, the prefix sums ...s and their application in the design of Boolean circuits for addition. Publications * * Translated in * Anatolii A. Karatsuba and Yu. P. Ofman (1962), "Умножение многозначных чисел на автоматах" ("Multiplication of Many-Digital Numbers by Automatic Computers"), ''Doklady Akademii Nauk SSSR'', vol. 146, pages 293–294. (Published by A. N. Kolmogorov, with two separate result ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Computer Platform
A computing platform or digital platform is an environment in which a piece of software is executed. It may be the hardware or the operating system (OS), even a web browser and associated application programming interfaces, or other underlying software, as long as the program code is executed with it. Computing platforms have different abstraction levels, including a computer architecture, an OS, or runtime libraries. A computing platform is the stage on which computer programs can run. A platform can be seen both as a constraint on the software development process, in that different platforms provide different functionality and restrictions; and as an assistant to the development process, in that they provide low-level functionality ready-made. For example, an OS may be a platform that abstracts the underlying differences in hardware and provides a generic command for saving files or accessing the network. Components Platforms may also include: * Hardware alone, in the cas ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Big O Notation
Big ''O'' notation is a mathematical notation that describes the limiting behavior of a function when the argument tends towards a particular value or infinity. Big O is a member of a family of notations invented by Paul Bachmann, Edmund Landau, and others, collectively called Bachmann–Landau notation or asymptotic notation. The letter O was chosen by Bachmann to stand for ''Ordnung'', meaning the order of approximation. In computer science, big O notation is used to classify algorithms according to how their run time or space requirements grow as the input size grows. In analytic number theory, big O notation is often used to express a bound on the difference between an arithmetical function and a better understood approximation; a famous example of such a difference is the remainder term in the prime number theorem. Big O notation is also used in many other fields to provide similar estimates. Big O notation characterizes functions according to their growth rates: d ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Master Theorem (analysis Of Algorithms)
In the analysis of algorithms, the master theorem for divide-and-conquer recurrences provides an asymptotic analysis (using Big O notation) for recurrence relations of types that occur in the analysis of many divide and conquer algorithms. The approach was first presented by Jon Bentley, Dorothea Blostein (née Haken), and James B. Saxe in 1980, where it was described as a "unifying method" for solving such recurrences. The name "master theorem" was popularized by the widely used algorithms textbook ''Introduction to Algorithms'' by Cormen, Leiserson, Rivest, and Stein. Not all recurrence relations can be solved with the use of this theorem; its generalizations include the Akra–Bazzi method. Introduction Consider a problem that can be solved using a recursive algorithm such as the following: procedure p(input ''x'' of size ''n''): if ''n'' 1). Crucially, a and b must not depend on n. The theorem below also assumes that, as a base case for the recurrence, T(n)=\Th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Recurrence Relation
In mathematics, a recurrence relation is an equation according to which the nth term of a sequence of numbers is equal to some combination of the previous terms. Often, only k previous terms of the sequence appear in the equation, for a parameter k that is independent of n; this number k is called the ''order'' of the relation. If the values of the first k numbers in the sequence have been given, the rest of the sequence can be calculated by repeatedly applying the equation. In ''linear recurrences'', the th term is equated to a linear function of the k previous terms. A famous example is the recurrence for the Fibonacci numbers, F_n=F_+F_ where the order k is two and the linear function merely adds the two previous terms. This example is a linear recurrence with constant coefficients, because the coefficients of the linear function (1 and 1) are constants that do not depend on n. For these recurrences, one can express the general term of the sequence as a closed-form expression o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Time Complexity
In computer science, the time complexity is the computational complexity that describes the amount of computer time it takes to run an algorithm. Time complexity is commonly estimated by counting the number of elementary operations performed by the algorithm, supposing that each elementary operation takes a fixed amount of time to perform. Thus, the amount of time taken and the number of elementary operations performed by the algorithm are taken to be related by a constant factor. Since an algorithm's running time may vary among different inputs of the same size, one commonly considers the worst-case time complexity, which is the maximum amount of time required for inputs of a given size. Less common, and usually specified explicitly, is the average-case complexity, which is the average of the time taken on inputs of a given size (this makes sense because there are only a finite number of possible inputs of a given size). In both cases, the time complexity is generally expresse ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Binary Multiplier
A binary multiplier is an electronic circuit used in digital electronics, such as a computer, to multiply two binary numbers. A variety of computer arithmetic techniques can be used to implement a digital multiplier. Most techniques involve computing the set of ''partial products,'' which are then summed together using binary adders. This process is similar to long multiplication, except that it uses a base-2 (binary) numeral system. History Between 1947 and 1949 Arthur Alec Robinson worked for English Electric Ltd, as a student apprentice, and then as a development engineer. Crucially during this period he studied for a PhD degree at the University of Manchester, where he worked on the design of the hardware multiplier for the early Mark 1 computer. However, until the late 1970s, most minicomputers did not have a multiply instruction, and so programmers used a "multiply routine" which repeatedly shifts and accumulates partial results, often written using loop unwinding. Mainfr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Recursion
Recursion (adjective: ''recursive'') occurs when a thing is defined in terms of itself or of its type. Recursion is used in a variety of disciplines ranging from linguistics to logic. The most common application of recursion is in mathematics and computer science, where a function being defined is applied within its own definition. While this apparently defines an infinite number of instances (function values), it is often done in such a way that no infinite loop or infinite chain of references ("crock recursion") can occur. Formal definitions In mathematics and computer science, a class of objects or methods exhibits recursive behavior when it can be defined by two properties: * A simple ''base case'' (or cases) — a terminating scenario that does not use recursion to produce an answer * A ''recursive step'' — a set of rules that reduces all successive cases toward the base case. For example, the following is a recursive definition of a person's ''ancestor''. One's ances ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Charles Babbage
Charles Babbage (; 26 December 1791 – 18 October 1871) was an English polymath. A mathematician, philosopher, inventor and mechanical engineer, Babbage originated the concept of a digital programmable computer. Babbage is considered by some to be " father of the computer". Babbage is credited with inventing the first mechanical computer, the Difference Engine, that eventually led to more complex electronic designs, though all the essential ideas of modern computers are to be found in Babbage's Analytical Engine, programmed using a principle openly borrowed from the Jacquard loom. Babbage had a broad range of interests in addition to his work on computers covered in his book ''Economy of Manufactures and Machinery''. His varied work in other fields has led him to be described as "pre-eminent" among the many polymaths of his century. Babbage, who died before the complete successful engineering of many of his designs, including his Difference Engine and Analytical Eng ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Radix
In a positional numeral system, the radix or base is the number of unique digits, including the digit zero, used to represent numbers. For example, for the decimal/denary system (the most common system in use today) the radix (base number) is ten, because it uses the ten digits from 0 through 9. In any standard positional numeral system, a number is conventionally written as with ''x'' as the string of digits and ''y'' as its base, although for base ten the subscript is usually assumed (and omitted, together with the pair of parentheses), as it is the most common way to express value. For example, (the decimal system is implied in the latter) and represents the number one hundred, while (100)2 (in the binary system with base 2) represents the number four. Etymology ''Radix'' is a Latin word for "root". ''Root'' can be considered a synonym for ''base,'' in the arithmetical sense. In numeral systems In the system with radix 13, for example, a string of digits such as 398 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |