Kac–Moody Algebra
In mathematics, a Kac–Moody algebra (named for Victor Kac and Robert Moody, who independently and simultaneously discovered them in 1968) is a Lie algebra, usually infinite-dimensional, that can be defined by generators and relations through a generalized Cartan matrix. These algebras form a generalization of finite-dimensional semisimple Lie algebras, and many properties related to the structure of a Lie algebra such as its root system, irreducible representations, and connection to flag manifolds have natural analogues in the Kac–Moody setting. A class of Kac–Moody algebras called affine Lie algebras is of particular importance in mathematics and theoretical physics, especially two-dimensional conformal field theory and the theory of exactly solvable models. Kac discovered an elegant proof of certain combinatorial identities, the Macdonald identities, which is based on the representation theory of affine Kac–Moody algebras. Howard Garland and James Lepowsky demonstrated th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Élie Cartan
Élie Joseph Cartan (; 9 April 1869 – 6 May 1951) was an influential French mathematician who did fundamental work in the theory of Lie groups, differential systems (coordinate-free geometric formulation of PDEs), and differential geometry. He also made significant contributions to general relativity and indirectly to quantum mechanics. He is widely regarded as one of the greatest mathematicians of the twentieth century. His son Henri Cartan was an influential mathematician working in algebraic topology. Life Élie Cartan was born 9 April 1869 in the village of Dolomieu, Isère to Joseph Cartan (1837–1917) and Anne Cottaz (1841–1927). Joseph Cartan was the village blacksmith; Élie Cartan recalled that his childhood had passed under "blows of the anvil, which started every morning from dawn", and that "his mother, during those rare minutes when she was free from taking care of the children and the house, was working with a spinning-wheel". Élie had an elder sister Je ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Adjoint Representation Of A Lie Algebra
In mathematics, the adjoint representation (or adjoint action) of a Lie group ''G'' is a way of representing the elements of the group as linear transformations of the group's Lie algebra, considered as a vector space. For example, if ''G'' is GL(n, \mathbb), the Lie group of real ''n''-by-''n'' invertible matrices, then the adjoint representation is the group homomorphism that sends an invertible ''n''-by-''n'' matrix g to an endomorphism of the vector space of all linear transformations of \mathbb^n defined by: x \mapsto g x g^ . For any Lie group, this natural representation is obtained by linearizing (i.e. taking the differential of) the action of ''G'' on itself by conjugation. The adjoint representation can be defined for linear algebraic groups over arbitrary fields. Definition Let ''G'' be a Lie group, and let :\Psi: G \to \operatorname(G) be the mapping , with Aut(''G'') the automorphism group of ''G'' and given by the inner automorphism (conjugation) :\Psi_g ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Generating Set
In mathematics and physics, the term generator or generating set may refer to any of a number of related concepts. The underlying concept in each case is that of a smaller set of objects, together with a set of operations that can be applied to it, that result in the creation of a larger collection of objects, called the generated set. The larger set is then said to be generated by the smaller set. It is commonly the case that the generating set has a simpler set of properties than the generated set, thus making it easier to discuss and examine. It is usually the case that properties of the generating set are in some way preserved by the act of generation; likewise, the properties of the generated set are often reflected in the generating set. List of generators A list of examples of generating sets follow. * Generating set or spanning set of a vector space: a set that spans the vector space * Generating set of a group: A subset of a group that is not contained in any subgro ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Graded Lie Algebra
In mathematics, a graded Lie algebra is a Lie algebra endowed with a gradation which is compatible with the Lie bracket. In other words, a graded Lie algebra is a Lie algebra which is also a nonassociative graded algebra under the bracket operation. A choice of Cartan decomposition endows any semisimple Lie algebra with the structure of a graded Lie algebra. Any parabolic Lie algebra is also a graded Lie algebra. A graded Lie superalgebra extends the notion of a graded Lie algebra in such a way that the Lie bracket is no longer assumed to be necessarily anticommutative. These arise in the study of derivations on graded algebras, in the deformation theory of Murray Gerstenhaber, Kunihiko Kodaira, and Donald C. Spencer, and in the theory of Lie derivatives. A supergraded Lie superalgebra is a further generalization of this notion to the category of superalgebras in which a graded Lie superalgebra is endowed with an additional super \Z/2\Z-gradation. These arise when one ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cartan Matrix
In mathematics, the term Cartan matrix has three meanings. All of these are named after the French mathematician Élie Cartan. Amusingly, the Cartan matrices in the context of Lie algebras were first investigated by Wilhelm Killing, whereas the Killing form is due to Cartan. Lie algebras A (symmetrizable) generalized Cartan matrix is a square matrix A = (a_) with integral entries such that # For diagonal entries, a_ = 2 . # For non-diagonal entries, a_ \leq 0 . # a_ = 0 if and only if a_ = 0 # A can be written as DS, where D is a diagonal matrix, and S is a symmetric matrix. For example, the Cartan matrix for ''G''2 can be decomposed as such: : \begin 2 & -3 \\ -1 & 2 \end = \begin 3&0\\ 0&1 \end\begin \frac & -1 \\ -1 & 2 \end. The third condition is not independent but is really a consequence of the first and fourth conditions. We can always choose a ''D'' with positive diagonal entries. In that case, if ''S'' in the ab ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Positive-definite Matrix
In mathematics, a symmetric matrix M with real entries is positive-definite if the real number z^\textsfMz is positive for every nonzero real column vector z, where z^\textsf is the transpose of More generally, a Hermitian matrix (that is, a complex matrix equal to its conjugate transpose) is positive-definite if the real number z^* Mz is positive for every nonzero complex column vector z, where z^* denotes the conjugate transpose of z. Positive semi-definite matrices are defined similarly, except that the scalars z^\textsfMz and z^* Mz are required to be positive ''or zero'' (that is, nonnegative). Negative-definite and negative semi-definite matrices are defined analogously. A matrix that is not positive semi-definite and not negative semi-definite is sometimes called indefinite. A matrix is thus positive-definite if and only if it is the matrix of a positive-definite quadratic form or Hermitian form. In other words, a matrix is positive-definite if and only if it defines a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Nathan Jacobson
Nathan Jacobson (October 5, 1910 – December 5, 1999) was an American mathematician. Biography Born Nachman Arbiser in Warsaw, Jacobson emigrated to America with his family in 1918. He graduated from the University of Alabama in 1930 and was awarded a doctorate in mathematics from Princeton University in 1934. While working on his thesis, ''Non-commutative polynomials and cyclic algebras'', he was advised by Joseph Wedderburn. Jacobson taught and researched at Bryn Mawr College (1935–1936), the University of Chicago (1936–1937), the University of North Carolina at Chapel Hill (1937–1943), and Johns Hopkins University (1943–1947) before joining Yale University in 1947. He remained at Yale until his retirement. He was a member of the National Academy of Sciences and the American Academy of Arts and Sciences. He served as president of the American Mathematical Society from 1971 to 1973, and was awarded their highest honour, the Leroy P. Steele prize for lifetime achievement, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Transactions Of The American Mathematical Society
The ''Transactions of the American Mathematical Society'' is a monthly peer-reviewed scientific journal of mathematics published by the American Mathematical Society. It was established in 1900. As a requirement, all articles must be more than 15 printed pages. See also * ''Bulletin of the American Mathematical Society'' * '' Journal of the American Mathematical Society'' * ''Memoirs of the American Mathematical Society'' * ''Notices of the American Mathematical Society'' * ''Proceedings of the American Mathematical Society'' External links * ''Transactions of the American Mathematical Society''on JSTOR JSTOR (; short for ''Journal Storage'') is a digital library founded in 1995 in New York City. Originally containing digitized back issues of academic journals, it now encompasses books and other primary sources as well as current issues of j ... American Mathematical Society academic journals Mathematics journals Publications established in 1900 {{math-journal-st ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Harish-Chandra
Harish-Chandra Fellow of the Royal Society, FRS (11 October 1923 – 16 October 1983) was an Indian American mathematician and physicist who did fundamental work in representation theory, especially harmonic analysis on semisimple Lie groups. Early life Harish-Chandra was born in Kanpur. He was educated at BNSD Inter College, B.N.S.D. College, Kanpur and at the University of Allahabad. After receiving his master's degree in Physics in 1943, he moved to the Indian Institute of Science, Bangalore for further studies under Homi J. Bhabha. In 1945, he moved to University of Cambridge, and worked as a research student under Paul Dirac. While at Cambridge, he attended lectures by Wolfgang Pauli, and during one of them pointed out a mistake in Pauli's work. The two were to become lifelong friends. During this time he became increasingly interested in mathematics. At Cambridge he obtained his PhD in 1947. Honors and awards He was a member of the United States National Academy of Scie ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Claude Chevalley
Claude Chevalley (; 11 February 1909 – 28 June 1984) was a French mathematician who made important contributions to number theory, algebraic geometry, class field theory, finite group theory and the theory of algebraic groups. He was a founding member of the Bourbaki group. Life His father, Abel Chevalley, was a French diplomat who, jointly with his wife Marguerite Chevalley née Sabatier, wrote ''The Concise Oxford French Dictionary''. Chevalley graduated from the École Normale Supérieure in 1929, where he studied under Émile Picard. He then spent time at the University of Hamburg, studying under Emil Artin and at the University of Marburg, studying under Helmut Hasse. In Germany, Chevalley discovered Japanese mathematics in the person of Shokichi Iyanaga. Chevalley was awarded a doctorate in 1933 from the University of Paris for a thesis on class field theory. When World War II broke out, Chevalley was at Princeton University. After reporting to the French Embassy, h ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Jean-Pierre Serre
Jean-Pierre Serre (; born 15 September 1926) is a French mathematician who has made contributions to algebraic topology, algebraic geometry, and algebraic number theory. He was awarded the Fields Medal in 1954, the Wolf Prize in 2000 and the inaugural Abel Prize in 2003. Biography Personal life Born in Bages, Pyrénées-Orientales, France, to pharmacist parents, Serre was educated at the Lycée de Nîmes and then from 1945 to 1948 at the École Normale Supérieure in Paris. He was awarded his doctorate from the Sorbonne in 1951. From 1948 to 1954 he held positions at the Centre National de la Recherche Scientifique in Paris. In 1956 he was elected professor at the Collège de France, a position he held until his retirement in 1994. His wife, Professor Josiane Heulot-Serre, was a chemist; she also was the director of the Ecole Normale Supérieure de Jeunes Filles. Their daughter is the former French diplomat, historian and writer Claudine Monteil. The French mathematician Denis S ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |