KCC2
Potassium-chloride transporter member 5 (aka: KCC2 and SLC12A5) is a neuron-specific chloride potassium symporter responsible for establishing the chloride ion gradient in neurons through the maintenance of low intracellular chloride concentrations. It is a critical mediator of synaptic inhibition, cellular protection against excitotoxicity and may also act as a modulator of neuroplasticity. Potassium-chloride transporter member 5 is also known by the names: KCC2 (potassium chloride cotransporter 2) for its ionic substrates, and SLC12A5 for its genetic origin from the ''SLC12A5'' gene in humans. Animals with reduced expression of this transporter exhibit severe motor deficits, epileptiform activity, and spasticity. KCC2 knockout animals, in which KCC2 is completely absent, die postnatally due to respiratory failure. Location KCC2 is a neuron-specific membrane protein expressed throughout the central nervous system, including the hippocampus, hypothalamus, brainstem, and moton ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
SLC12A5
Potassium-chloride transporter member 5 (aka: KCC2 and SLC12A5) is a neuron-specific chloride potassium symporter responsible for establishing the chloride ion gradient in neurons through the maintenance of low intracellular chloride concentrations. It is a critical mediator of inhibitory postsynaptic potential, synaptic inhibition, cellular protection against excitotoxicity and may also act as a modulator of neuroplasticity. Potassium-chloride transporter member 5 is also known by the names: KCC2 (potassium chloride cotransporter 2) for its ionic substrates, and SLC12A5 for its genetic origin from the ''SLC12A5'' gene in humans. Animals with reduced expression of this transporter exhibit severe motor deficits, epileptiform activity, and spasticity. KCC2 knockout mouse, knockout animals, in which KCC2 is completely absent, die postnatally due to respiratory failure. Location KCC2 is a neuron-specific membrane protein expressed throughout the central nervous system, including the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
NKCC1
The Na-K-Cl cotransporter (NKCC) is a protein that aids in the secondary active transport of sodium, potassium, and chloride into cells. In humans there are two isoforms of this membrane transport protein, NKCC1 and NKCC2, encoded by two different genes (''SLC12A2'' and ''SLC12A1'' respectively). Two isoforms of the NKCC1/Slc12a2 gene result from keeping (isoform 1) or skipping (isoform 2) exon 21 in the final gene product. NKCC1 is widely distributed throughout the human body; it has important functions in organs that secrete fluids. It is found specifically in the kidney, where it extracts sodium, potassium, and chloride from the urine so they can be reabsorbed into the blood. Function NKCC proteins are membrane transport proteins that transport sodium (Na), potassium (K), and chloride (Cl) ions across the cell membrane. Because they move each solute in the same direction, they are considered symporters. They maintain electroneutrality by moving two positively charged solut ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
TrkB Receptor
Tropomyosin receptor kinase B (TrkB), also known as tyrosine receptor kinase B, or BDNF/NT-3 growth factors receptor or neurotrophic tyrosine kinase, receptor, type 2 is a protein that in humans is encoded by the ''NTRK2'' gene. TrkB is a receptor for brain-derived neurotrophic factor (BDNF). Standard pronunciation is "track bee". Function Tropomyosin receptor kinase B is the high affinity catalytic receptor for several " neurotrophins", which are small protein growth factors that induce the survival and differentiation of distinct cell populations. The neurotrophins that activate TrkB are: BDNF (Brain Derived Neurotrophic Factor), neurotrophin-4 (NT-4), and neurotrophin-3 (NT-3).> As such, TrkB mediates the multiple effects of these neurotrophic factors, which includes neuronal differentiation and survival. Research has shown that activation of the TrkB receptor can lead to down regulation of the KCC2 chloride transporter in cells of the CNS. Except for the role of the pathw ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Chloride Potassium Symporter
The chloride potassium symporter is a membrane transport protein of the solute carrier family 12 that is present in the S3-segment of the renal proximal tubule Page 780 and in the neuron. It functions in renal chloride reabsorption to transport chloride across the basolateral membrane. Chloride potassium symporter can lower intracellular chloride concentrations below the electrochemical equilibrium potential. The concentrations of K+ and Cl− ions are high inside the cell due to the activities of Na+/K+ ATPase and NKCC cotransporter, respectively. Hence, their net driving force acting on the K/Cl cotransporter favours the exit of both K+ and Cl− from the cell. Types Chloride potassium symporter are classified into: * Chloride potassium symporter 4, predominating in the kidney. * Chloride potassium symporter 5, predominating in neurons. Each is encoded by a separate gene of the solute carrier family 12, hence accounting for the numbers succeeding its name. For example, chlo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
WNK1
WNK (lysine deficient protein kinase 1), also known as WNK1, is an enzyme that is encoded by the ''WNK1'' gene. WNK1 is serine-threonine protein kinase and part of the "with no lysine/K" kinase WNK family. The predominant role of WNK1 is the regulation of cation-Cl− cotransporters (CCCs) such as the sodium chloride cotransporter ( NCC), basolateral Na-K-Cl symporter (NKCC1), and potassium chloride cotransporter (KCC1) located within the kidney. CCCs mediate ion homeostasis and modulate blood pressure by transporting ions in and out of the cell. ''WNK1'' mutations as a result have been implicated in blood pressure disorders/diseases; a prime example being familial hyperkalemic hypertension (FHHt). Structure The WNK1 protein is composed of 2382 amino acids (molecular weight 230 kDa). The protein contains a kinase domain located within its short N-terminal domain and a long C-terminal tail. The kinase domain has some similarity to the MEKK protein kinase family. As a member ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
WNK3
Serine/threonine-protein kinase WNK3, also known as protein kinase lysine-deficient 3, is a protein that in humans is encoded by the ''WNK3'' gene. Function WNK3 is a protein belonging to the 'with no lysine' family of serine-threonine protein kinases. These family members lack the catalytic lysine in subdomain II, and instead have a conserved lysine in subdomain I. This family member functions as a positive regulator of the transcellular Ca2+ transport pathway, and it plays a role in the increase of cell survival in a caspase 3 Caspase-3 is a caspase protein that interacts with caspase-8 and caspase-9. It is encoded by the ''CASP3'' gene. ''CASP3'' orthologs have been identified in numerous mammals for which complete genome data are available. Unique orthologs are als ... dependent pathway. References Further reading * * * * * * * * * * * * * * * * * * * * EC 2.7.11 {{gene-X-stub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Central Nervous System
The central nervous system (CNS) is the part of the nervous system consisting primarily of the brain and spinal cord. The CNS is so named because the brain integrates the received information and coordinates and influences the activity of all parts of the bodies of bilaterally symmetric and triploblastic animals—that is, all multicellular animals except sponges and diploblasts. It is a structure composed of nervous tissue positioned along the rostral (nose end) to caudal (tail end) axis of the body and may have an enlarged section at the rostral end which is a brain. Only arthropods, cephalopods and vertebrates have a true brain (precursor structures exist in onychophorans, gastropods and lancelets). The rest of this article exclusively discusses the vertebrate central nervous system, which is radically distinct from all other animals. Overview In vertebrates, the brain and spinal cord are both enclosed in the meninges. The meninges provide a barrier to chemicals dissolv ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hyperpolarization (biology)
Hyperpolarization is a change in a cell's membrane potential that makes it more negative. It is the opposite of a depolarization. It inhibits action potentials by increasing the stimulus required to move the membrane potential to the action potential threshold. Hyperpolarization is often caused by efflux of K+ (a cation) through K+ channels, or influx of Cl– (an anion) through Cl– channels. On the other hand, influx of cations, e.g. Na+ through Na+ channels or Ca2+ through Ca2+ channels, inhibits hyperpolarization. If a cell has Na+ or Ca2+ currents at rest, then inhibition of those currents will also result in a hyperpolarization. This voltage-gated ion channel response is how the hyperpolarization state is achieved. In neurons, the cell enters a state of hyperpolarization immediately following the generation of an action potential. While hyperpolarized, the neuron is in a refractory period that lasts roughly 2 milliseconds, during which the neuron is unabl ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Excitotoxicity
In excitotoxicity, nerve cells suffer damage or death when the levels of otherwise necessary and safe neurotransmitters such as glutamate become pathologically high, resulting in excessive stimulation of receptors. For example, when glutamate receptors such as the NMDA receptor or AMPA receptor encounter excessive levels of the excitatory neurotransmitter, glutamate, significant neuronal damage might ensue. Excess glutamate allows high levels of calcium ions (Ca2+) to enter the cell. Ca2+ influx into cells activates a number of enzymes, including phospholipases, endonucleases, and proteases such as calpain. These enzymes go on to damage cell structures such as components of the cytoskeleton, membrane, and DNA. In evolved, complex adaptive systems such as biological life it must be understood that mechanisms are rarely, if ever, simplistically direct. For example, NMDA in subtoxic amounts induces neuronal survival of otherwise toxic levels of glutamate. Excitotoxicity may be inv ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Neurotrophin-4
Neurotrophin-4 (NT-4), also known as neurotrophin-5 (NT-5), is a protein that in humans is encoded by the ''NTF4'' gene. It is a neurotrophic factor that signals predominantly through the TrkB receptor tyrosine kinase Receptor tyrosine kinases (RTKs) are the high-affinity cell surface receptors for many polypeptide growth factors, cytokines, and hormones. Of the 90 unique tyrosine kinase genes identified in the human genome, 58 encode receptor tyrosine kinase .... See also * Tropomyosin receptor kinase B § Agonists References Further reading * * * * * * * * * * * * * * * * * * * * External links * * Neurotrophic factors Peptide hormones Growth factors Developmental neuroscience Proteins TrkB agonists {{gene-19-stub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
BDNF
Brain-derived neurotrophic factor (BDNF), or abrineurin, is a protein found in the and the periphery. that, in humans, is encoded by the ''BDNF'' gene. BDNF is a member of the neurotrophin family of growth factors, which are related to the canonical nerve growth factor (NGF), a family which also includes NT-3 and NT-4/NT-5. Neurotrophic factors are found in the brain and the periphery. BDNF was first isolated from a pig brain in 1982 by Yves-Alain Barde and Hans Thoenen. BDNF activates the TrkB tyrosine kinase receptor. Function BDNF acts on certain neurons of the central nervous system and the peripheral nervous system expressing TrkB, helping to support survival of existing neurons, and encouraging growth and differentiation of new neurons and synapses. In the brain it is active in the hippocampus, cortex, and basal forebrain—areas vital to learning, memory, and higher thinking. BDNF is also expressed in the retina, kidneys, prostate, motor neurons, and skeletal m ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Neuroplasticity
Neuroplasticity, also known as neural plasticity, or brain plasticity, is the ability of Neural circuit, neural networks in the brain to change through growth and reorganization. It is when the brain is rewired to function in some way that differs from how it previously functioned. These changes range from individual neuron pathways making new connections, to systematic adjustments like cortical remapping. Examples of neuroplasticity include circuit and network changes that result from learning a new ability, environmental influences, practice, and psychological stress. Neuroplasticity was once thought by neuroscientists to manifest only during childhood, but research in the latter half of the 20th century showed that many aspects of the brain can be altered (or are "plastic") even through adulthood. However, the developing brain exhibits a higher degree of plasticity than the adult brain. Activity-dependent plasticity can have significant implications for healthy development, le ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |