HOME
*





KCBS Pentagram
In quantum foundations, the KCBS pentagram was discovered by Alexander Klyachko, M. Ali Can, Sinem Binicioglu, and Alexander Shumovsky as an example disproving noncontextual hidden variable models. Let's say we have a pentagram, which is a graph with 5 vertices and 5 edges. Each vertex can be colored either red or blue. An edge is said to match if both of its vertices have the same color. Otherwise, it's a mismatch. In a hidden variable model, the total number of mismatches over all of the edges has to be an even number due to cyclicity, i.e. 0, 2 or 4. So, with a probability mixture over hidden variable assignments, the expectation value In probability theory, the expected value (also called expectation, expectancy, mathematical expectation, mean, average, or first moment) is a generalization of the weighted average. Informally, the expected value is the arithmetic mean of a l ... of the sum of mismatches over all of the 5 edges has to lie between 0 and 4. Then, someo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quantum Foundations
Quantum foundations is a discipline of science that seeks to understand the most counter-intuitive aspects of quantum theory, reformulate it and even propose new generalizations thereof. Contrary to other physical theories, such as general relativity, the defining axioms of quantum theory are quite ad hoc, with no obvious physical intuition. While they lead to the right experimental predictions, they do not come with a mental picture of the world where they fit. There exist different approaches to resolve this conceptual gap: * First, one can put quantum physics in contraposition with classical physics: by identifying scenarios, such as Bell experiments, where quantum theory radically deviates from classical predictions, one hopes to gain physical insights on the structure of quantum physics. * Second, one can attempt to find a re-derivation of the quantum formalism in terms of operational axioms. * Third, one can search for a full correspondence between the mathematical elements ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Alexander Klyachko
Alexander is a male given name. The most prominent bearer of the name is Alexander the Great, the king of the Ancient Greek kingdom of Macedonia who created one of the largest empires in ancient history. Variants listed here are Aleksandar, Aleksander and Aleksandr. Related names and diminutives include Iskandar, Alec, Alek, Alex, Alexandre, Aleks, Aleksa and Sander; feminine forms include Alexandra, Alexandria, and Sasha. Etymology The name ''Alexander'' originates from the (; 'defending men' or 'protector of men'). It is a compound of the verb (; 'to ward off, avert, defend') and the noun (, genitive: , ; meaning 'man'). It is an example of the widespread motif of Greek names expressing "battle-prowess", in this case the ability to withstand or push back an enemy battle line. The earliest attested form of the name, is the Mycenaean Greek feminine anthroponym , , (/Alexandra/), written in the Linear B syllabic script. Alaksandu, alternatively called ''Alakasandu'' or ' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sinem Binicioglu
Sinem is a Turkish feminine given name. * Sinem Barut (born 1986), Turkish volleyball player * Sinem Balık (born 1974), Turkish opera singer *Sinem Banna (born 1968), Turkish-American artist * Sinem Doğu (born 1987), Turkish female ice hockey player * Sinem Kobal (born 1987), Turkish television and film actress * Sinem Öztürk, Turkish actress and presenter * Sinem Saban, Australian film writer, producer, director, and human rights activist *Sinem Ünsal Sinem Ünsal (born 21 June 1993) is a Turkish actress, best known for her role in the TV series ''Kızım'', ''Siyah Beyaz Aşk'' and ''Mucize Doktor''. Life Ünsal was born on 21 June 1993 in İzmir as the second child of her family. Her mot ..., Turkish actress See also * Akap Sinem, Turkish volleyball player {{given name Turkish feminine given names ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Alexander Shumovsky
Alexander is a male given name. The most prominent bearer of the name is Alexander the Great, the king of the Ancient Greek kingdom of Macedonia who created one of the largest empires in ancient history. Variants listed here are Aleksandar, Aleksander and Aleksandr. Related names and diminutives include Iskandar, Alec, Alek, Alex, Alexandre, Aleks, Aleksa and Sander; feminine forms include Alexandra, Alexandria, and Sasha. Etymology The name ''Alexander'' originates from the (; 'defending men' or 'protector of men'). It is a compound of the verb (; 'to ward off, avert, defend') and the noun (, genitive: , ; meaning 'man'). It is an example of the widespread motif of Greek names expressing "battle-prowess", in this case the ability to withstand or push back an enemy battle line. The earliest attested form of the name, is the Mycenaean Greek feminine anthroponym , , (/Alexandra/), written in the Linear B syllabic script. Alaksandu, alternatively called ''Alakasandu'' or ' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quantum Contextuality
Quantum contextuality is a feature of the Phenomenology (physics), phenomenology of quantum mechanics whereby measurements of quantum observables cannot simply be thought of as revealing pre-existing values. Any attempt to do so in a realistic hidden-variable theory leads to values that are dependent upon the choice of the other (compatible) observables which are simultaneously measured (the measurement context). More formally, the measurement result (assumed pre-existing) of a quantum observable is dependent upon which other Commutative property, commuting observables are within the same measurement set. Contextuality was first demonstrated to be a feature of quantum phenomenology by the Kochen–Specker theorem, Bell–Kochen–Specker theorem. The study of contextuality has developed into a major topic of interest in quantum foundations as the phenomenon crystallises certain non-classical and counter-intuitive aspects of quantum theory. A number of powerful mathematical framewor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hidden Variable Theory
In physics, hidden-variable theories are proposals to provide explanations of quantum mechanical phenomena through the introduction of (possibly unobservable) hypothetical entities. The existence of fundamental indeterminacy for some measurements is assumed as part of the mathematical formulation of quantum mechanics; moreover, bounds for indeterminacy can be expressed in a quantitative form by the Heisenberg uncertainty principle. Most hidden-variable theories are attempts to avoid quantum indeterminacy, but possibly at the expense of requiring the existence of nonlocal interactions. Albert Einstein objected to aspects of quantum mechanics, and famously declared "I am convinced God does not play dice". Einstein, Podolsky, and Rosen argued by assuming local causality that quantum mechanics is an incomplete description of reality. Bell's theorem and subsequent experiments would later show that local hidden variables (a way for finding a complete description of reality) of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Expectation Value
In probability theory, the expected value (also called expectation, expectancy, mathematical expectation, mean, average, or first moment) is a generalization of the weighted average. Informally, the expected value is the arithmetic mean of a large number of independently selected outcomes of a random variable. The expected value of a random variable with a finite number of outcomes is a weighted average of all possible outcomes. In the case of a continuum of possible outcomes, the expectation is defined by integration. In the axiomatic foundation for probability provided by measure theory, the expectation is given by Lebesgue integration. The expected value of a random variable is often denoted by , , or , with also often stylized as or \mathbb. History The idea of the expected value originated in the middle of the 17th century from the study of the so-called problem of points, which seeks to divide the stakes ''in a fair way'' between two players, who have to en ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mermin–Peres Square
Quantum pseudo-telepathy is the fact that in certain Bayesian games with asymmetric information, players who have access to a shared physical system in an entangled quantum state, and who are able to execute strategies that are contingent upon measurements performed on the entangled physical system, are able to achieve higher expected payoffs in equilibrium than can be achieved in any mixed-strategy Nash equilibrium of the same game by players without access to the entangled quantum system. In their 1999 paper, Gilles Brassard, Richard Cleve and Alain Tapp demonstrated that quantum pseudo-telepathy allows players in some games to achieve outcomes that would otherwise only be possible if participants were allowed to communicate during the game. This phenomenon came to be referred to ''as quantum pseudo-telepathy'', with the prefix ''pseudo'' referring to the fact that quantum pseudo-telepathy does not involve the exchange of information between any parties. Instead, quantum pseu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Mechanics
Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, quantum field theory, quantum technology, and quantum information science. Classical physics, the collection of theories that existed before the advent of quantum mechanics, describes many aspects of nature at an ordinary (macroscopic) scale, but is not sufficient for describing them at small (atomic and subatomic) scales. Most theories in classical physics can be derived from quantum mechanics as an approximation valid at large (macroscopic) scale. Quantum mechanics differs from classical physics in that energy, momentum, angular momentum, and other quantities of a bound system are restricted to discrete values ( quantization); objects have characteristics of both particles and waves (wave–particle duality); and there are limits to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]