HOME
*



picture info

K-nearest Neighbour
In statistics, the ''k''-nearest neighbors algorithm (''k''-NN) is a non-parametric supervised learning method first developed by Evelyn Fix and Joseph Hodges in 1951, and later expanded by Thomas Cover. It is used for classification and regression. In both cases, the input consists of the ''k'' closest training examples in a data set. The output depends on whether ''k''-NN is used for classification or regression: :* In ''k-NN classification'', the output is a class membership. An object is classified by a plurality vote of its neighbors, with the object being assigned to the class most common among its ''k'' nearest neighbors (''k'' is a positive integer, typically small). If ''k'' = 1, then the object is simply assigned to the class of that single nearest neighbor. :* In ''k-NN regression'', the output is the property value for the object. This value is the average of the values of ''k'' nearest neighbors. If ''k'' = 1, then the output is simply assigned to the v ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Statistics
Statistics (from German language, German: ''wikt:Statistik#German, Statistik'', "description of a State (polity), state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. In applying statistics to a scientific, industrial, or social problem, it is conventional to begin with a statistical population or a statistical model to be studied. Populations can be diverse groups of people or objects such as "all people living in a country" or "every atom composing a crystal". Statistics deals with every aspect of data, including the planning of data collection in terms of the design of statistical survey, surveys and experimental design, experiments.Dodge, Y. (2006) ''The Oxford Dictionary of Statistical Terms'', Oxford University Press. When census data cannot be collected, statisticians collect data by developing specific experiment designs and survey sample (statistics), samples. Representative sampling as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Variable Kernel Density Estimation
In statistics, adaptive or "variable-bandwidth" kernel density estimation is a form of kernel density estimation in which the size of the kernels used in the estimate are varied depending upon either the location of the samples or the location of the test point. It is a particularly effective technique when the sample space is multi-dimensional. Rationale Given a set of samples, \lbrace \vec x_i \rbrace, we wish to estimate the density, P(\vec x), at a test point, \vec x: : P(\vec x) \approx \frac : W = \sum_^n w_i : w_i = K \left ( \frac \right ) where ''n'' is the number of samples, ''K'' is the "kernel", ''h'' is its width and ''D'' is the number of dimensions in \vec x. The kernel can be thought of as a simple, linear filter. Using a fixed filter width may mean that in regions of low density, all samples will fall in the tails of the filter with very low weighting, while regions of high density will find an excessive number of samples in the central region with we ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bootstrap Aggregating
Bootstrap aggregating, also called bagging (from bootstrap aggregating), is a machine learning ensemble meta-algorithm designed to improve the stability and accuracy of machine learning algorithms used in statistical classification and regression. It also reduces variance and helps to avoid overfitting. Although it is usually applied to decision tree methods, it can be used with any type of method. Bagging is a special case of the model averaging approach. Description of the technique Given a standard training set D of size ''n'', bagging generates ''m'' new training sets D_i, each of size ''n′'', by sampling from ''D'' uniformly and with replacement. By sampling with replacement, some observations may be repeated in each D_i. If ''n ′''=''n'', then for large ''n'' the set D_i is expected to have the fraction (1 - 1/'' e'') (≈63.2%) of the unique examples of ''D'', the rest being duplicates. This kind of sample is known as a bootstrap sample. Sampling with replacement ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bayes Error Rate
In statistical classification, Bayes error rate is the lowest possible error rate for any classifier of a random outcome (into, for example, one of two categories) and is analogous to the irreducible error.K. Tumer, K. (1996) "Estimating the Bayes error rate through classifier combining" in ''Proceedings of the 13th International Conference on Pattern Recognition'', Volume 2, 695–699 A number of approaches to the estimation of the Bayes error rate exist. One method seeks to obtain analytical bounds which are inherently dependent on distribution parameters, and hence difficult to estimate. Another approach focuses on class densities, while yet another method combines and compares various classifiers. The Bayes error rate finds important use in the study of patterns and machine learning techniques. Error determination In terms of machine learning and pattern classification, the labels of a set of random observations can be divided into 2 or more classes. Each observation is calle ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Annals Of Statistics
The ''Annals of Statistics'' is a peer-reviewed statistics journal published by the Institute of Mathematical Statistics. It was started in 1973 as a continuation in part of the '' Annals of Mathematical Statistics (1930)'', which was split into the ''Annals of Statistics'' and the ''Annals of Probability''. The journal CiteScore is 5.8, and its SCImago Journal Rank is 5.877, both from 2020. Articles older than 3 years are available on JSTOR, and all articles since 2004 are freely available on the arXiv. Editorial board The following persons have been editors of the journal: * Ingram Olkin (1972–1973) * I. Richard Savage (1974–1976) * Rupert Miller (1977–1979) * David V. Hinkley (1980–1982) * Michael D. Perlman (1983–1985) * Willem van Zwet (1986–1988) * Arthur Cohen (1988–1991) * Michael Woodroofe (1992–1994) * Larry Brown and John Rice (1995–1997) * Hans-Rudolf Künsch and James O. Berger (1998–2000) * John Marden and Jon A. Wellner (2001–2003) * M ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mutual Information
In probability theory and information theory, the mutual information (MI) of two random variables is a measure of the mutual dependence between the two variables. More specifically, it quantifies the " amount of information" (in units such as shannons (bits), nats or hartleys) obtained about one random variable by observing the other random variable. The concept of mutual information is intimately linked to that of entropy of a random variable, a fundamental notion in information theory that quantifies the expected "amount of information" held in a random variable. Not limited to real-valued random variables and linear dependence like the correlation coefficient, MI is more general and determines how different the joint distribution of the pair (X,Y) is from the product of the marginal distributions of X and Y. MI is the expected value of the pointwise mutual information (PMI). The quantity was defined and analyzed by Claude Shannon in his landmark paper "A Mathemati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Evolutionary Algorithm
In computational intelligence (CI), an evolutionary algorithm (EA) is a subset of evolutionary computation, a generic population-based metaheuristic optimization algorithm. An EA uses mechanisms inspired by biological evolution, such as reproduction, mutation, recombination, and selection. Candidate solutions to the optimization problem play the role of individuals in a population, and the fitness function determines the quality of the solutions (see also loss function). Evolution of the population then takes place after the repeated application of the above operators. Evolutionary algorithms often perform well approximating solutions to all types of problems because they ideally do not make any assumption about the underlying fitness landscape. Techniques from evolutionary algorithms applied to the modeling of biological evolution are generally limited to explorations of microevolutionary processes and planning models based upon cellular processes. In most real applications of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Feature Scaling
Feature scaling is a method used to normalize the range of independent variables or features of data. In data processing, it is also known as data normalization and is generally performed during the data preprocessing step. Motivation Since the range of values of raw data varies widely, in some machine learning algorithms, objective functions will not work properly without normalization. For example, many classifiers calculate the distance between two points by the Euclidean distance. If one of the features has a broad range of values, the distance will be governed by this particular feature. Therefore, the range of all features should be normalized so that each feature contributes approximately proportionately to the final distance. Another reason why feature scaling is applied is that gradient descent converges much faster with feature scaling than without it. It's also important to apply feature scaling if regularization is used as part of the loss function (so that coeffic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Feature Selection
In machine learning and statistics, feature selection, also known as variable selection, attribute selection or variable subset selection, is the process of selecting a subset of relevant features (variables, predictors) for use in model construction. Feature selection techniques are used for several reasons: :* simplification of models to make them easier to interpret by researchers/users, :* shorter training times, :* to avoid the curse of dimensionality, :*improve data's compatibility with a learning model class, :*encode inherent symmetries present in the input space. The central premise when using a feature selection technique is that the data contains some features that are either ''redundant'' or ''irrelevant'', and can thus be removed without incurring much loss of information. ''Redundant'' and ''irrelevant'' are two distinct notions, since one relevant feature may be redundant in the presence of another relevant feature with which it is strongly correlated. Feature sele ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hyperparameter Optimization
In machine learning, hyperparameter optimization or tuning is the problem of choosing a set of optimal hyperparameters for a learning algorithm. A hyperparameter is a parameter whose value is used to control the learning process. By contrast, the values of other parameters (typically node weights) are learned. The same kind of machine learning model can require different constraints, weights or learning rates to generalize different data patterns. These measures are called hyperparameters, and have to be tuned so that the model can optimally solve the machine learning problem. Hyperparameter optimization finds a tuple of hyperparameters that yields an optimal model which minimizes a predefined loss function on given independent data. The objective function takes a tuple of hyperparameters and returns the associated loss. Cross-validation is often used to estimate this generalization performance. Approaches Grid search The traditional way of performing hyperparameter optimiz ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Heuristic (computer Science)
In mathematical optimization and computer science, heuristic (from Greek εὑρίσκω "I find, discover") is a technique designed for solving a problem more quickly when classic methods are too slow for finding an approximate solution, or when classic methods fail to find any exact solution. This is achieved by trading optimality, completeness, accuracy, or precision for speed. In a way, it can be considered a shortcut. A heuristic function, also simply called a heuristic, is a function that ranks alternatives in search algorithms at each branching step based on available information to decide which branch to follow. For example, it may approximate the exact solution. Definition and motivation The objective of a heuristic is to produce a solution in a reasonable time frame that is good enough for solving the problem at hand. This solution may not be the best of all the solutions to this problem, or it may simply approximate the exact solution. But it is still valuable b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]