HOME
*





K-center
In graph theory, the metric -center problem is a combinatorial optimization problem studied in theoretical computer science. Given cities with specified distances, one wants to build warehouses in different cities and minimize the maximum distance of a city to a warehouse. In graph theory, this means finding a set of vertices for which the largest distance of any point to its closest vertex in the -set is minimum. The vertices must be in a metric space, providing a complete graph that satisfies the triangle inequality. Formal definition Let (X,d) be a metric space where X is a set and d is a metric A set \mathbf\subseteq\mathcal, is provided together with a parameter k. The goal is to find a subset \mathcal\subseteq \mathbf with , \mathcal, =k such that the maximum distance of a point in \mathbf to the closest point in \mathcal is minimized. The problem can be formally defined as follows: For a metric space (\mathcal,d), * Input: a set \mathbf\subseteq\mathcal, and a param ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Facility Location Problem
The study of facility location problems (FLP), also known as location analysis, is a branch of operations research and computational geometry concerned with the optimal placement of facilities to minimize transportation costs while considering factors like avoiding placing hazardous materials near housing, and competitors' facilities. The techniques also apply to cluster analysis. Minimum facility location A simple facility location problem is the Weber problem, in which a single facility is to be placed, with the only optimization criterion being the minimization of the weighted sum of distances from a given set of point sites. More complex problems considered in this discipline include the placement of multiple facilities, constraints on the locations of facilities, and more complex optimization criteria. In a basic formulation, the facility location problem consists of a set of potential facility sites ''L'' where a facility can be opened, and a set of demand points ''D'' that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Farthest-first Traversal
In computational geometry, the farthest-first traversal of a compact metric space is a sequence of points in the space, where the first point is selected arbitrarily and each successive point is as far as possible from the set of previously-selected points. The same concept can also be applied to a finite set of geometric points, by restricting the selected points to belong to the set or equivalently by considering the finite metric space generated by these points. For a finite metric space or finite set of geometric points, the resulting sequence forms a permutation of the points, also known as the greedy permutation. Every prefix of a farthest-first traversal provides a set of points that is widely spaced and close to all remaining points. More precisely, no other set of equally many points can be spaced more than twice as widely, and no other set of equally many points can be less than half as far to its farthest remaining point. In part because of these properties, farthes ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Parameterized Approximation Algorithm
A parameterized approximation algorithm is a type of algorithm that aims to find approximate solutions to NP-hard optimization problems in polynomial time in the input size and a function of a specific parameter. These algorithms are designed to combine the best aspects of both traditional approximation algorithms and fixed-parameter tractability. In traditional approximation algorithms, the goal is to find solutions that are at most a certain factor \alpha away from the optimal solution, known as an \alpha-approximation, in polynomial time. On the other hand, parameterized algorithms are designed to find exact solutions to problems, but with the constraint that the running time of the algorithm is polynomial in the input size and a function of a specific parameter k. The parameter describes some property of the input and is small in typical applications. The problem is said to be fixed-parameter tractable (FPT) if there is an algorithm that can find the optimum solution in f(k)n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Graph Theory
In mathematics, graph theory is the study of ''graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of '' vertices'' (also called ''nodes'' or ''points'') which are connected by '' edges'' (also called ''links'' or ''lines''). A distinction is made between undirected graphs, where edges link two vertices symmetrically, and directed graphs, where edges link two vertices asymmetrically. Graphs are one of the principal objects of study in discrete mathematics. Definitions Definitions in graph theory vary. The following are some of the more basic ways of defining graphs and related mathematical structures. Graph In one restricted but very common sense of the term, a graph is an ordered pair G=(V,E) comprising: * V, a set of vertices (also called nodes or points); * E \subseteq \, a set of edges (also called links or lines), which are unordered pairs of vertices (that is, an edge is associated with t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Computational Problems In Graph Theory
Computation is any type of arithmetic or non-arithmetic calculation that follows a well-defined model (e.g., an algorithm). Mechanical or electronic devices (or, historically, people) that perform computations are known as ''computers''. An especially well-known discipline of the study of computation is computer science. Physical process of Computation Computation can be seen as a purely physical process occurring inside a closed physical system called a computer. Examples of such physical systems are digital computers, mechanical computers, quantum computers, DNA computers, molecular computers, microfluidics-based computers, analog computers, and wetware computers. This point of view has been adopted by the physics of computation, a branch of theoretical physics, as well as the field of natural computing. An even more radical point of view, pancomputationalism (inaudible word), is the postulate of digital physics that argues that the evolution of the universe is itself a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Combinatorial Optimization
Combinatorial optimization is a subfield of mathematical optimization that consists of finding an optimal object from a finite set of objects, where the set of feasible solutions is discrete or can be reduced to a discrete set. Typical combinatorial optimization problems are the travelling salesman problem ("TSP"), the minimum spanning tree problem ("MST"), and the knapsack problem. In many such problems, such as the ones previously mentioned, exhaustive search is not tractable, and so specialized algorithms that quickly rule out large parts of the search space or approximation algorithms must be resorted to instead. Combinatorial optimization is related to operations research, algorithm theory, and computational complexity theory. It has important applications in several fields, including artificial intelligence, machine learning, auction theory, software engineering, VLSI, applied mathematics and theoretical computer science. Some research literature considers discrete o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dominating Set
In graph theory, a dominating set for a graph is a subset of its vertices, such that any vertex of is either in , or has a neighbor in . The domination number is the number of vertices in a smallest dominating set for . The dominating set problem concerns testing whether for a given graph and input ; it is a classical NP-complete decision problem in computational complexity theory. Therefore it is believed that there may be no efficient algorithm that can compute for all graphs . However, there are efficient approximation algorithms, as well as efficient exact algorithms for certain graph classes. Dominating sets are of practical interest in several areas. In wireless networking, dominating sets are used to find efficient routes within ad-hoc mobile networks. They have also been used in document summarization, and in designing secure systems for electrical grids. Formal definition Given an undirected graph , a subset of vertices D\subseteq V is called a dominating se ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Minimum K-cut
In mathematics, the minimum ''k''-cut, is a combinatorial optimization problem that requires finding a set of edges whose removal would partition the graph to at least ''k'' connected components. These edges are referred to as ''k''-cut. The goal is to find the minimum-weight ''k''-cut. This partitioning can have applications in VLSI design, data-mining, finite elements and communication in parallel computing. Formal definition Given an undirected graph ''G'' = (''V'', ''E'') with an assignment of weights to the edges ''w'': ''E'' → ''N'' and an integer ''k'' ∈ , partition ''V'' into ''k'' disjoint sets ''F'' =  while minimizing : \sum_^\sum_^k\sum_ w ( \left \ ) For a fixed ''k'', the problem is polynomial time solvable in ''O''(, ''V'', ''k''2). However, the problem is NP-complete if ''k'' is part of the input. It is also NP-complete if we specify k vertices and ask for the minimum k-cut which separates these vertice ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Traveling Salesman Problem
The travelling salesman problem (also called the travelling salesperson problem or TSP) asks the following question: "Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the origin city?" It is an NP-hard problem in combinatorial optimization, important in theoretical computer science and operations research. The travelling purchaser problem and the vehicle routing problem are both generalizations of TSP. In the theory of computational complexity, the decision version of the TSP (where given a length ''L'', the task is to decide whether the graph has a tour of at most ''L'') belongs to the class of NP-complete problems. Thus, it is possible that the worst-case running time for any algorithm for the TSP increases superpolynomially (but no more than exponentially) with the number of cities. The problem was first formulated in 1930 and is one of the most intensively studied p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

P Versus NP Problem
The P versus NP problem is a major unsolved problem in theoretical computer science. In informal terms, it asks whether every problem whose solution can be quickly verified can also be quickly solved. The informal term ''quickly'', used above, means the existence of an algorithm solving the task that runs in polynomial time, such that the time to complete the task varies as a polynomial function on the size of the input to the algorithm (as opposed to, say, exponential time). The general class of questions for which some algorithm can provide an answer in polynomial time is " P" or "class P". For some questions, there is no known way to find an answer quickly, but if one is provided with information showing what the answer is, it is possible to verify the answer quickly. The class of questions for which an answer can be ''verified'' in polynomial time is NP, which stands for "nondeterministic polynomial time".A nondeterministic Turing machine can move to a state that is not ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Manhattan Metric
A taxicab geometry or a Manhattan geometry is a geometry whose usual distance function or metric of Euclidean geometry is replaced by a new metric in which the distance between two points is the sum of the absolute differences of their Cartesian coordinates. The taxicab metric is also known as rectilinear distance, ''L''1 distance, ''L''1 distance or \ell_1 norm (see ''Lp'' space), snake distance, city block distance, Manhattan distance or Manhattan length. The latter names refer to the rectilinear street layout on the island of Manhattan, where the shortest path a taxi travels between two points is the sum of the absolute values of distances that it travels on avenues and on streets. The geometry has been used in regression analysis since the 18th century, and is often referred to as LASSO. The geometric interpretation dates to non-Euclidean geometry of the 19th century and is due to Hermann Minkowski. In \mathbb^2 , the taxicab distance between two points (x_1, y_1) and (x_2, y ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Doubling Dimension
In mathematics, a metric space with metric is said to be doubling if there is some doubling constant such that for any and , it is possible to cover the ball with the union of at most balls of radius . The base-2 logarithm of is called the doubling dimension of . Euclidean spaces \mathbb^d equipped with the usual Euclidean metric are examples of doubling spaces where the doubling constant depends on the dimension . For example, in one dimension, ; and in two dimensions, . In general, Euclidean space \mathbb^d has doubling dimension \Theta(d). Assouad's embedding theorem An important question in metric space geometry is to characterize those metric spaces that can be embedded in some Euclidean space by a bi-Lipschitz function. This means that one can essentially think of the metric space as a subset of Euclidean space. Not all metric spaces may be embedded in Euclidean space. Doubling metric spaces, on the other hand, would seem like they have more of a chance, since ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]