HOME





Parameterized Approximation Algorithm
A parameterized approximation algorithm is a type of algorithm that aims to find approximate solutions to NP-hard optimization problems in polynomial time in the input size and a function of a specific parameter. These algorithms are designed to combine the best aspects of both traditional approximation algorithms and fixed-parameter tractability. In traditional approximation algorithms, the goal is to find solutions that are at most a certain factor away from the optimal solution, known as an -approximation, in polynomial time. On the other hand, parameterized algorithms are designed to find exact solutions to problems, but with the constraint that the running time of the algorithm is polynomial in the input size and a function of a specific parameter . The parameter describes some property of the input and is small in typical applications. The problem is said to be fixed-parameter tractable (FPT) if there is an algorithm that can find the optimum solution in f(k)n^ time, where ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Algorithm
In mathematics and computer science, an algorithm () is a finite sequence of Rigour#Mathematics, mathematically rigorous instructions, typically used to solve a class of specific Computational problem, problems or to perform a computation. Algorithms are used as specifications for performing calculations and data processing. More advanced algorithms can use Conditional (computer programming), conditionals to divert the code execution through various routes (referred to as automated decision-making) and deduce valid inferences (referred to as automated reasoning). In contrast, a Heuristic (computer science), heuristic is an approach to solving problems without well-defined correct or optimal results.David A. Grossman, Ophir Frieder, ''Information Retrieval: Algorithms and Heuristics'', 2nd edition, 2004, For example, although social media recommender systems are commonly called "algorithms", they actually rely on heuristics as there is no truly "correct" recommendation. As an e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Dominating Set
In graph theory, a dominating set for a Graph (discrete mathematics), graph is a subset of its vertices, such that any vertex of is in , or has a neighbor in . The domination number is the number of vertices in a smallest dominating set for . The dominating set problem concerns testing whether for a given graph and input ; it is a classical NP-complete decision problem in computational complexity theory. Therefore it is believed that there may be no polynomial-time algorithm, efficient algorithm that can compute for all graphs . However, there are efficient approximation algorithms, as well as efficient exact algorithms for certain graph classes. Dominating sets are of practical interest in several areas. In wireless networking, dominating sets are used to find efficient routes within ad-hoc mobile networks. They have also been used in document summarization, and in designing secure systems for Electrical grid, electrical grids. Formal definition Given an undirected g ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Clique-width
In graph theory, the clique-width of a graph is a parameter that describes the structural complexity of the graph; it is closely related to treewidth, but unlike treewidth it can be small for dense graphs. It is defined as the minimum number of labels needed to construct by means of the following 4 operations : #Creation of a new vertex with label (denoted by ) #Disjoint union of two labeled graphs and (denoted by G \oplus H) #Joining by an edge every vertex labeled to every vertex labeled (denoted by ), where #Renaming label to label (denoted by ) Graphs of bounded clique-width include the cographs and distance-hereditary graphs. Although it is NP-hard to compute the clique-width when it is unbounded, and unknown whether it can be computed in polynomial time when it is bounded, efficient approximation algorithms for clique-width are known. Based on these algorithms and on Courcelle's theorem, many graph optimization problems that are NP-hard for arbitrary graphs ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Pathwidth
In graph theory, a path decomposition of a graph is, informally, a representation of as a "thickened" path graph, and the pathwidth of is a number that measures how much the path was thickened to form . More formally, a path-decomposition is a sequence of subsets of vertices of such that the endpoints of each edge appear in one of the subsets and such that each vertex appears in a contiguous subsequence of the subsets,. and the pathwidth is one less than the size of the largest set in such a decomposition. Pathwidth is also known as interval thickness (one less than the maximum clique size in an interval supergraph of ), vertex separation number, or node searching number. Pathwidth and path-decompositions are closely analogous to treewidth and tree decompositions. They play a key role in the theory of graph minors: the families of graphs that are closed under graph minors and do not include all forests may be characterized as having bounded pathwidth, and the "vortices ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Planar Graph
In graph theory, a planar graph is a graph (discrete mathematics), graph that can be graph embedding, embedded in the plane (geometry), plane, i.e., it can be drawn on the plane in such a way that its edges intersect only at their endpoints. In other words, it can be drawn in such a way that no edges cross each other. Such a drawing is called a plane graph, or a planar embedding of the graph. A plane graph can be defined as a planar graph with a mapping from every node to a point on a plane, and from every edge to a plane curve on that plane, such that the extreme points of each curve are the points mapped from its end nodes, and all curves are disjoint except on their extreme points. Every graph that can be drawn on a plane can be drawn on the sphere as well, and vice versa, by means of stereographic projection. Plane graphs can be encoded by combinatorial maps or rotation systems. An equivalence class of topologically equivalent drawings on the sphere, usually with addit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Complexity Theory (computation)
In theoretical computer science and mathematics, computational complexity theory focuses on classifying computational problems according to their resource usage, and explores the relationships between these classifications. A computational problem is a task solved by a computer. A computation problem is solvable by mechanical application of mathematical steps, such as an algorithm. A problem is regarded as inherently difficult if its solution requires significant resources, whatever the algorithm used. The theory formalizes this intuition, by introducing mathematical models of computation to study these problems and quantifying their computational complexity, i.e., the amount of resources needed to solve them, such as time and storage. Other measures of complexity are also used, such as the amount of communication (used in communication complexity), the number of gates in a circuit (used in circuit complexity) and the number of processors (used in parallel computing). One of the ro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Manhattan Metric
Taxicab geometry or Manhattan geometry is geometry where the familiar Euclidean distance is ignored, and the distance between two point (geometry), points is instead defined to be the sum of the absolute differences of their respective Cartesian coordinates, a distance function (or Metric (mathematics), metric) called the ''taxicab distance'', ''Manhattan distance'', or ''city block distance''. The name refers to the island of Manhattan, or generically any planned city with a rectangular grid of streets, in which a taxicab can only travel along grid directions. In taxicab geometry, the distance between any two points equals the length of their shortest grid path. This different definition of distance also leads to a different definition of the length of a curve, for which a line segment between any two points has the same length as a grid path between those points rather than its Euclidean length. The taxicab distance is also sometimes known as ''rectilinear distance'' or distanc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Metric K-center
In graph theory, the metric -center problem or vertex k-center problem is a classical combinatorial optimization problem studied in theoretical computer science that is NP-hard. Given cities with specified distances, one wants to build warehouses in different cities and minimize the maximum distance of a city to a warehouse. In graph theory, this means finding a set of vertices for which the largest distance of any point to its closest vertex in the -set is minimum. The vertices must be in a metric space, providing a complete graph that satisfies the triangle inequality. It has application in facility location and clustering. Formal definition The problem was first proposed by Hakimi in 1964. Let (X,d) be a metric space where X is a set and d is a metric A set \mathbf\subseteq\mathcal, is provided together with a parameter k. The goal is to find a subset \mathcal\subseteq \mathbf with , \mathcal, =k such that the maximum distance of a point in \mathbf to the closest point in \ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Euclidean Space
Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces'' of any positive integer dimension ''n'', which are called Euclidean ''n''-spaces when one wants to specify their dimension. For ''n'' equal to one or two, they are commonly called respectively Euclidean lines and Euclidean planes. The qualifier "Euclidean" is used to distinguish Euclidean spaces from other spaces that were later considered in physics and modern mathematics. Ancient Greek geometers introduced Euclidean space for modeling the physical space. Their work was collected by the ancient Greek mathematician Euclid in his ''Elements'', with the great innovation of '' proving'' all properties of the space as theorems, by starting from a few fundamental properties, called '' postulates'', which either were considered as evid ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Metric Space
In mathematics, a metric space is a Set (mathematics), set together with a notion of ''distance'' between its Element (mathematics), elements, usually called point (geometry), points. The distance is measured by a function (mathematics), function called a metric or distance function. Metric spaces are a general setting for studying many of the concepts of mathematical analysis and geometry. The most familiar example of a metric space is 3-dimensional Euclidean space with its usual notion of distance. Other well-known examples are a sphere equipped with the angular distance and the hyperbolic plane. A metric may correspond to a Conceptual metaphor , metaphorical, rather than physical, notion of distance: for example, the set of 100-character Unicode strings can be equipped with the Hamming distance, which measures the number of characters that need to be changed to get from one string to another. Since they are very general, metric spaces are a tool used in many different bra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Dimension
In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coordinate is needed to specify a point on itfor example, the point at 5 on a number line. A surface, such as the boundary of a cylinder or sphere, has a dimension of two (2D) because two coordinates are needed to specify a point on itfor example, both a latitude and longitude are required to locate a point on the surface of a sphere. A two-dimensional Euclidean space is a two-dimensional space on the plane. The inside of a cube, a cylinder or a sphere is three-dimensional (3D) because three coordinates are needed to locate a point within these spaces. In classical mechanics, space and time are different categories and refer to absolute space and time. That conception of the world is a four-dimensional space but not the one that w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

K-means Clustering
''k''-means clustering is a method of vector quantization, originally from signal processing, that aims to partition of a set, partition ''n'' observations into ''k'' clusters in which each observation belongs to the cluster (statistics), cluster with the nearest mean (cluster centers or cluster centroid), serving as a prototype of the cluster. This results in a partitioning of the data space into Voronoi cells. ''k''-means clustering minimizes within-cluster variances (squared Euclidean distances), but not regular Euclidean distances, which would be the more difficult Weber problem: the mean optimizes squared errors, whereas only the geometric median minimizes Euclidean distances. For instance, better Euclidean solutions can be found using k-medians clustering, ''k''-medians and k-medoids, ''k''-medoids. The problem is computationally difficult (NP-hardness, NP-hard); however, efficient heuristic algorithms converge quickly to a local optimum. These are usually similar to the ex ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]