Jaguar (microarchitecture)
   HOME
*





Jaguar (microarchitecture)
The AMD Jaguar Family 16h is a low-power microarchitecture designed by AMD. It is used in APUs succeeding the Bobcat Family microarchitecture in 2013 and being succeeded by AMD's Puma architecture in 2014. It is two-way superscalar and capable of out-of-order execution. It is used in AMD's Semi-Custom Business Unit as a design for custom processors and is used by AMD in four product families: ''Kabini'' aimed at notebooks and mini PCs, ''Temash'' aimed at tablets, ''Kyoto'' aimed at micro-servers, and the ''G-Series'' aimed at embedded applications. Both the PlayStation 4 and the Xbox One use chips based on the Jaguar microarchitecture, with more powerful GPUs than AMD sells in its own commercially available Jaguar APUs. Design * 32 KiB instruction + 32 KiB data L1 cache per core, L1 cache includes parity error detection * 16-way, 1–2 MiB unified L2 cache shared by two or four cores, L2 cache is protected from errors by the use of error correcting code * Out ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Socket AM1
Socket FS1b (rebranded as Socket AM1 ) is a socket designed by AMD, launched in April 2014 for desktop SoCs in the value segment. Socket AM1 is intended for a class of CPUs that contain both an integrated GPU and a chipset, essentially forming a complete SoC implementation, and as such has pins for display, PCI Express, SATA, and other I/O interfaces directly in the socket. AMD's first compatible CPUs, designated as APUs, are 4 socketable chips in the ''Kabini'' family of the Jaguar microarchitecture, marketed under the Athlon and Sempron names and announced on April 9, 2014. The brand names are Athlon and Sempron. The underlying microarchitectures are Jaguar and Puma. All products are SoCs, this means the Chipset is on the die of the APU and not on the motherboard. While the AMD mobile CPUs are available in a 722-pin package Socket FS1, it is not clear whether these notebook CPUs are compatible with Socket AM1 or vice versa. Its mobile counterpart is Socket FT3 (BGA-769). ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Advanced Micro Devices
Advanced Micro Devices, Inc. (AMD) is an American multinational semiconductor company based in Santa Clara, California, that develops computer processors and related technologies for business and consumer markets. While it initially manufactured its own processors, the company later outsourced its manufacturing, a practice known as going fabless, after GlobalFoundries was spun off in 2009. AMD's main products include microprocessors, motherboard chipsets, embedded processors, graphics processors, and FPGAs for servers, workstations, personal computers, and embedded system applications. History First twelve years Advanced Micro Devices was formally incorporated by Jerry Sanders, along with seven of his colleagues from Fairchild Semiconductor, on May 1, 1969. Sanders, an electrical engineer who was the director of marketing at Fairchild, had, like many Fairchild executives, grown frustrated with the increasing lack of support, opportunity, and flexibility within th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fusion Controller Hub
This is an overview of chipsets sold under the AMD brand, manufactured before May 2004 by the company itself, before the adoption of open platform approach as well as chipsets manufactured by ATI Technologies after October 2006 as the completion of the ATI acquisition. North- and Southbridges Northbridges AMD-xxx A-Link Express II A-Link Express and A-Link Express II are essentially PCIe 1.1 x4 lanes. See Comparison of ATI Chipsets for the comparison of chipsets sold under the ATI brand for AMD processors, before AMD's acquisition of ATI. A-Link Express III A-Link Express III is essentially PCIe 2.0 x4 lanes. Southbridges AMD-xxx 1 Parallel ATA, also known as Enhanced IDE supports up to 2 devices per channel. A-Link Express * All models support eSATA implementations of available SATA channels. 1 Parallel ATA, also known as Enhanced IDE supports up to 2 devices per channel. Fusion controller hubs (FCH) For AMD APU models from 2011 until 2016. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

AMD-V
x86 virtualization is the use of hardware-assisted virtualization capabilities on an x86/x86-64 CPU. In the late 1990s x86 virtualization was achieved by complex software techniques, necessary to compensate for the processor's lack of hardware-assisted virtualization capabilities while attaining reasonable performance. In 2005 and 2006, both Intel (VT-x) and AMD ( AMD-V) introduced limited hardware virtualization support that allowed simpler virtualization software but offered very few speed benefits. Greater hardware support, which allowed substantial speed improvements, came with later processor models. Software-based virtualization The following discussion focuses only on virtualization of the x86 architecture protected mode. In protected mode the operating system kernel runs at a higher privilege such as ring 0, and applications at a lower privilege such as ring 3. In software-based virtualization, a host OS has direct access to hardware while the guest OSs have limited ac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bit Manipulation Instruction Sets
Bit manipulation instructions sets (BMI sets) are extensions to the x86 instruction set architecture for microprocessors from Intel and AMD. The purpose of these instruction sets is to improve the speed of bit manipulation. All the instructions in these sets are non-SIMD and operate only on general-purpose registers. There are two sets published by Intel: BMI (now referred to as BMI1) and BMI2; they were both introduced with the Haswell microarchitecture with BMI1 matching features offered by AMD's ABM instruction set and BMI2 extending them. Another two sets were published by AMD: ABM (''Advanced Bit Manipulation'', which is also a subset of SSE4a implemented by Intel as part of SSE4.2 and BMI1), and TBM (''Trailing Bit Manipulation'', an extension introduced with Piledriver-based processors as an extension to BMI1, but dropped again in Zen-based processors). ABM (Advanced Bit Manipulation) AMD was the first to introduce the instructions that now form Intel's BMI1 as part o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


AES Instruction Set
An Advanced Encryption Standard instruction set is now integrated into many processors. The purpose of the instruction set is to improve the speed and security of applications performing encryption and decryption using Advanced Encryption Standard (AES). They are often implemented as instructions implementing a single round of AES along with a special version for the last round which has a slightly different method. The side channel attack surface of AES is reduced when implemented in an instruction set, compared to when AES is implemented in software only. x86 architecture processors AES-NI (or the Intel Advanced Encryption Standard New Instructions; AES-NI) was the first major implementation. AES-NI is an extension to the x86 instruction set architecture for microprocessors from Intel and AMD proposed by Intel in March 2008. Instructions Intel The following Intel processors support the AES-NI instruction set: * Westmere based processors, specifically: ** Westmere ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




F16C
The F16C (previously/informally known as CVT16) instruction set is an x86 instruction set architecture extension which provides support for converting between half-precision and standard IEEE single-precision floating-point formats. History The CVT16 instruction set, announced by AMD on May 1, 2009, is an extension to the 128-bit SSE core instructions in the x86 and AMD64 instruction set. CVT16 is a revision of part of the SSE5 instruction set proposal announced on August 30, 2007, which is supplemented by the XOP and FMA4 instruction sets. This revision makes the binary coding of the proposed new instructions more compatible with Intel's AVX instruction extensions, while the functionality of the instructions is unchanged. In recent documents, the name F16C is formally used in both Intel and AMD x86-64 architecture specifications. Technical information There are variants that convert four floating-point values in an XMM register or 8 floating-point values in a YMM registe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Advanced Vector Extensions
Advanced Vector Extensions (AVX) are extensions to the x86 instruction set architecture for microprocessors from Intel and Advanced Micro Devices (AMD). They were proposed by Intel in March 2008 and first supported by Intel with the Sandy Bridge processor shipping in Q1 2011 and later by AMD with the Bulldozer processor shipping in Q3 2011. AVX provides new features, new instructions and a new coding scheme. AVX2 (also known as Haswell New Instructions) expands most integer commands to 256 bits and introduces new instructions. They were first supported by Intel with the Haswell processor, which shipped in 2013. AVX-512 expands AVX to 512-bit support using a new EVEX prefix encoding proposed by Intel in July 2013 and first supported by Intel with the Knights Landing co-processor, which shipped in 2016. In conventional processors, AVX-512 was introduced with Skylake server and HEDT processors in 2017. Advanced Vector Extensions AVX uses sixteen YMM registers to perform a sin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


SSE4
SSE4 (Streaming SIMD Extensions 4) is a SIMD CPU instruction set used in the Intel Core microarchitecture and AMD K10 (K8L). It was announced on September 27, 2006, at the Fall 2006 Intel Developer Forum, with vague details in a white paper; more precise details of 47 instructions became available at the Spring 2007 Intel Developer Forum in Beijing, in the presentation. SSE4 is fully compatible with software written for previous generations of Intel 64 and IA-32 architecture microprocessors. All existing software continues to run correctly without modification on microprocessors that incorporate SSE4, as well as in the presence of existing and new applications that incorporate SSE4. SSE4 subsets Intel SSE4 consists of 54 instructions. A subset consisting of 47 instructions, referred to as ''SSE4.1'' in some Intel documentation, is available in Penryn. Additionally, ''SSE4.2'', a second subset consisting of the 7 remaining instructions, is first available in Nehalem-based Core i7 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


SSE4a
SSE4 (Streaming SIMD Extensions 4) is a SIMD CPU instruction set used in the Intel Core microarchitecture and AMD K10 (K8L). It was announced on September 27, 2006, at the Fall 2006 Intel Developer Forum, with vague details in a white paper; more precise details of 47 instructions became available at the Spring 2007 Intel Developer Forum in Beijing, in the presentation. SSE4 is fully compatible with software written for previous generations of Intel 64 and IA-32 architecture microprocessors. All existing software continues to run correctly without modification on microprocessors that incorporate SSE4, as well as in the presence of existing and new applications that incorporate SSE4. SSE4 subsets Intel SSE4 consists of 54 instructions. A subset consisting of 47 instructions, referred to as ''SSE4.1'' in some Intel documentation, is available in Penryn. Additionally, ''SSE4.2'', a second subset consisting of the 7 remaining instructions, is first available in Nehalem-based Core i7 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




SSSE3
Supplemental Streaming SIMD Extensions 3 (SSSE3 or SSE3S) is a SIMD instruction set created by Intel and is the fourth iteration of the SSE technology. History SSSE3 was first introduced with Intel processors based on the Core microarchitecture on June 26, 2006 with the "Woodcrest" Xeons. SSSE3 has been referred to by the codenames Tejas New Instructions (TNI) or Merom New Instructions (MNI) for the first processor designs intended to support it. Functionality SSSE3 contains 16 new discrete instructions. Each instruction can act on 64-bit MMX or 128-bit XMM registers. Therefore, Intel's materials refer to 32 new instructions. They include: * Twelve instructions that perform horizontal addition or subtraction operations. * Six instructions that evaluate absolute values. * Two instructions that perform multiply-and-add operations and speed up the evaluation of dot products. * Two instructions that accelerate packed integer multiply operations and produce integer values with ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


SSE3
SSE3, Streaming SIMD Extensions 3, also known by its Intel code name Prescott New Instructions (PNI), is the third iteration of the SSE instruction set for the IA-32 (x86) architecture. Intel introduced SSE3 in early 2004 with the Prescott revision of their Pentium 4 CPU. In April 2005, AMD introduced a subset of SSE3 in revision E (Venice and San Diego) of their Athlon 64 CPUs. The earlier SIMD instruction sets on the x86 platform, from oldest to newest, are MMX, 3DNow! (developed by AMD, but not supported by Intel processors), SSE, and SSE2. SSE3 contains 13 new instructions over SSE2. Changes The most notable change is the capability to work horizontally in a register, as opposed to the more or less strictly vertical operation of all previous SSE instructions. More specifically, instructions to add and subtract the multiple values stored within a single register have been added. These instructions can be used to speed up the implementation of a number of DSP and 3D operati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]