Jazelle
Jazelle DBX (direct bytecode execution) is an extension that allows some ARM processors to execute Java bytecode in hardware as a third execution state alongside the existing ARM and Thumb modes. Jazelle functionality was specified in the ARMv5TEJ architecture and the first processor with Jazelle technology was the ARM926EJ-S. Jazelle is denoted by a "J" appended to the CPU name, except for post-v5 cores where it is required (albeit only in trivial form) for architecture conformance. Jazelle RCT (Runtime Compilation Target) is a different technology and is based on ThumbEE mode and supports ahead-of-time (AOT) and just-in-time (JIT) compilation with Java and other execution environments. The most prominent use of Jazelle DBX is by manufacturers of mobile phones to increase the execution speed of Java ME games and applications. A Jazelle-aware Java virtual machine (JVM) will attempt to run Java bytecode in hardware, while returning to the software for more complicated, or lesser- ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
ARM Architecture
ARM (stylised in lowercase as arm, formerly an acronym for Advanced RISC Machines and originally Acorn RISC Machine) is a family of reduced instruction set computer (RISC) instruction set architectures for computer processors, configured for various environments. Arm Ltd. develops the architectures and licenses them to other companies, who design their own products that implement one or more of those architectures, including system on a chip (SoC) and system on module (SOM) designs, that incorporate different components such as memory, interfaces, and radios. It also designs cores that implement these instruction set architectures and licenses these designs to many companies that incorporate those core designs into their own products. There have been several generations of the ARM design. The original ARM1 used a 32-bit internal structure but had a 26-bit address space that limited it to 64 MB of main memory. This limitation was removed in the ARMv3 series, which ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Jazelle RCT
ARM (stylised in lowercase as arm, formerly an acronym for Advanced RISC Machines and originally Acorn RISC Machine) is a family of reduced instruction set computer (RISC) instruction set architectures for computer processors, configured for various environments. Arm Ltd. develops the architectures and licenses them to other companies, who design their own products that implement one or more of those architectures, including system on a chip (SoC) and system on module (SOM) designs, that incorporate different components such as memory, interfaces, and radios. It also designs cores that implement these instruction set architectures and licenses these designs to many companies that incorporate those core designs into their own products. There have been several generations of the ARM design. The original ARM1 used a 32-bit internal structure but had a 26-bit address space that limited it to 64 MB of main memory. This limitation was removed in the ARMv3 series, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
ARM9
ARM9 is a group of 32-bit RISC ARM processor cores licensed by ARM Holdings for microcontroller use. The ARM9 core family consists of ARM9TDMI, ARM940T, ARM9E-S, ARM966E-S, ARM920T, ARM922T, ARM946E-S, ARM9EJ-S, ARM926EJ-S, ARM968E-S, ARM996HS. Since ARM9 cores were released from 1998 to 2006, they are no longer recommended for new IC designs, instead ARM Cortex-A, ARM Cortex-M, ARM Cortex-R cores are preferred. Overview With this design generation, ARM moved from a von Neumann architecture (Princeton architecture) to a (modified; meaning split cache) Harvard architecture with separate instruction and data buses (and caches), significantly increasing its potential speed. Most silicon chips integrating these cores will package them as modified Harvard architecture chips, combining the two address buses on the other side of separated CPU caches and tightly coupled memories. There are two subfamilies, implementing different ARM architecture versions. Differences from ARM7 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Just-in-time Compilation
In computing, just-in-time (JIT) compilation (also dynamic translation or run-time compilations) is a way of executing computer code that involves compilation during execution of a program (at run time) rather than before execution. This may consist of source code translation but is more commonly bytecode translation to machine code, which is then executed directly. A system implementing a JIT compiler typically continuously analyses the code being executed and identifies parts of the code where the speedup gained from compilation or recompilation would outweigh the overhead of compiling that code. JIT compilation is a combination of the two traditional approaches to translation to machine code—ahead-of-time compilation (AOT), and interpretation—and combines some advantages and drawbacks of both. Roughly, JIT compilation combines the speed of compiled code with the flexibility of interpretation, with the overhead of an interpreter and the additional overhead of compil ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Branch (computer Science)
A branch is an instruction in a computer program that can cause a computer to begin executing a different instruction sequence and thus deviate from its default behavior of executing instructions in order. ''Branch'' (or ''branching'', ''branched'') may also refer to the act of switching execution to a different instruction sequence as a result of executing a branch instruction. Branch instructions are used to implement control flow in program loops and conditionals (i.e., executing a particular sequence of instructions only if certain conditions are satisfied). A branch instruction can be either an ''unconditional branch'', which always results in branching, or a ''conditional branch'', which may or may not cause branching depending on some condition. Also, depending on how it specifies the address of the new instruction sequence (the "target" address), a branch instruction is generally classified as ''direct'', ''indirect'' or ''relative'', meaning that the instruction contai ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Program Counter
The program counter (PC), commonly called the instruction pointer (IP) in Intel x86 and Itanium microprocessors, and sometimes called the instruction address register (IAR), the instruction counter, or just part of the instruction sequencer, is a processor register that indicates where a computer is in its program sequence. Usually, the PC is incremented after fetching an instruction, and holds the memory address of (" points to") the next instruction that would be executed. Processors usually fetch instructions sequentially from memory, but ''control transfer'' instructions change the sequence by placing a new value in the PC. These include branches (sometimes called jumps), subroutine calls, and returns. A transfer that is conditional on the truth of some assertion lets the computer follow a different sequence under different conditions. A branch provides that the next instruction is fetched from elsewhere in memory. A subroutine call not only branches but saves the preced ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Undocumented Feature
An undocumented feature is an unintended or undocumented hardware operation, for example an undocumented instruction, or software feature found in computer hardware and software that is considered beneficial or useful. Sometimes the documentation is omitted through oversight, but undocumented features are sometimes not intended for use by end users, but left available for use by the vendor for software support and development. Also, some unintended operation of hardware or software that ends up being of utility to users is simply a bug, flaw or quirk. Since the suppliers of the software usually consider the software documentation to constitute a contract for the behavior of the software, undocumented features are generally left unsupported and may be removed or changed at will and without notice to the users. Some user-reported defects are viewed by software developers as working as expected, leading to the catchphrase "it's not a bug, it's a feature" (INABIAF) and its variat ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Application Binary Interface
In computer software, an application binary interface (ABI) is an interface between two binary program modules. Often, one of these modules is a library or operating system facility, and the other is a program that is being run by a user. An ''ABI'' defines how data structures or computational routines are accessed in machine code, which is a low-level, hardware-dependent format. In contrast, an ''API'' defines this access in source code, which is a relatively high-level, hardware-independent, often human-readable format. A common aspect of an ABI is the calling convention, which determines how data is provided as input to, or read as output from, computational routines. Examples of this are the x86 calling conventions. Adhering to an ABI (which may or may not be officially standardized) is usually the job of a compiler, operating system, or library author. However, an application programmer may have to deal with an ABI directly when writing a program in a mix of programming l ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Calling Convention
In computer science, a calling convention is an implementation-level (low-level) scheme for how subroutines or functions receive parameters from their caller and how they return a result. When some code calls a function, design choices have been taken for where and how parameters are passed to that function, and where and how results are returned from that function, with these transfers typically done via certain registers or within certain structures within the call stack. There are design choices for how the tasks of preparing for a function call and restoring the environment after the function call are divided between the caller and the callee. Some calling convention specifies the way every function should get called. Introduction Calling conventions are usually considered part of the Application Binary Interface ''ABI''. Calling conventions may be related to a particular programming language's evaluation strategy, but most often are not considered part of it (or vic ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
HotSpot (virtual Machine)
HotSpot, released as Java HotSpot Performance Engine, is a Java virtual machine for desktop and server computers, developed by Sun Microsystems and now maintained and distributed by Oracle Corporation. It features improved performance via methods such as just-in-time compilation and adaptive optimization. History The Java HotSpot Performance Engine was released on April 27, 1999, built on technologies from an implementation of the programming language Smalltalk named Strongtalk, originally developed by Longview Technologies, which traded as Animorphic. The Longview virtual machine was based on the Self virtual machine, with an interpreter replacing the fast-and-dumb first compiler. When Sun cancelled the Self project, two key people, Urs Hölzle and Lars Bak left Sun to start Longview. In 1997, Sun Microsystems purchased Animorphic. Shortly after acquiring Animorphic, Sun decided to write a new just-in-time (JIT) compiler for the Java virtual machine. This new compiler w ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Instruction Set
In computer science, an instruction set architecture (ISA), also called computer architecture, is an abstract model of a computer. A device that executes instructions described by that ISA, such as a central processing unit (CPU), is called an ''implementation''. In general, an ISA defines the supported instructions, data types, registers, the hardware support for managing main memory, fundamental features (such as the memory consistency, addressing modes, virtual memory), and the input/output model of a family of implementations of the ISA. An ISA specifies the behavior of machine code running on implementations of that ISA in a fashion that does not depend on the characteristics of that implementation, providing binary compatibility between implementations. This enables multiple implementations of an ISA that differ in characteristics such as performance, physical size, and monetary cost (among other things), but that are capable of running the same machine code, so that ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Binary Translation
In computing, binary translation is a form of binary recompilation where sequences of instructions are translated from a ''source'' instruction set to the ''target'' instruction set. In some cases such as instruction set simulation, the target instruction set may be the same as the source instruction set, providing testing and debugging features such as instruction trace, conditional breakpoints and hot spot detection. The two main types are static and dynamic binary translation. Translation can be done in hardware (for example, by circuits in a CPU) or in software (e.g. run-time engines, static recompiler, emulators). Motivation Binary translation is motivated by a lack of a binary for a target platform, the lack of source code to compile for the target platform, or otherwise difficulty in compiling the source for the target platform. Statically-recompiled binaries run potentially faster than their respective emulated binaries, as the emulation overhead is removed. This ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |