J.W.S. Cassels
   HOME
*





J.W.S. Cassels
John William Scott "Ian" Cassels, FRS (11 July 1922 – 27 July 2015) was a British mathematician. Biography Cassels was educated at Neville's Cross Council School in Durham and George Heriot's School in Edinburgh. He went on to study at the University of Edinburgh and graduated with an undergraduate Master of Arts (MA) degree in 1943. His academic career was interrupted in World War II when he was involved in cryptography at Bletchley Park. After the war he became a research student of Louis Mordell at Trinity College, Cambridge; he received his PhD in 1949 and was elected a fellow of Trinity in the same year. Cassels then spent a year lecturing in mathematics at the University of Manchester before returning to Cambridge as a lecturer in 1950. He was appointed Reader in Arithmetic in 1963, the same year he was elected as a fellow of the Royal Society of London. In 1967 he was appointed as Sadleirian Professor of Pure Mathematics at Cambridge. In 1969 he became Head of th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Durham, England
Durham ( , locally ), is a cathedral city and civil parish on the River Wear, County Durham, England. It is an administrative centre of the County Durham District, which is a successor to the historic County Palatine of Durham (which is different to both the ceremonial county and district of County Durham). The settlement was founded over the final resting place of St Cuthbert. Durham Cathedral was a centre of pilgrimage in medieval England while the Durham Castle has been the home of Durham University since 1832. Both built in 11th-century, the buildings were designated as a World Heritage Site by UNESCO in 1986. HM Prison Durham is also located close to the city centre and was built in 1816. Name The name "Durham" comes from the Brythonic element , signifying a hill fort and related to -ton, and the Old Norse , which translates to island.Surtees, R. (1816) ''History and Antiquities of the County Palatine of Durham'' (Classical County Histories) The Lord Bishop of Durh ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cryptography
Cryptography, or cryptology (from grc, , translit=kryptós "hidden, secret"; and ''graphein'', "to write", or ''-logia'', "study", respectively), is the practice and study of techniques for secure communication in the presence of adversarial behavior. More generally, cryptography is about constructing and analyzing protocols that prevent third parties or the public from reading private messages. Modern cryptography exists at the intersection of the disciplines of mathematics, computer science, information security, electrical engineering, digital signal processing, physics, and others. Core concepts related to information security ( data confidentiality, data integrity, authentication, and non-repudiation) are also central to cryptography. Practical applications of cryptography include electronic commerce, chip-based payment cards, digital currencies, computer passwords, and military communications. Cryptography prior to the modern age was effectively synonymo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Infinite Descent
In mathematics, a proof by infinite descent, also known as Fermat's method of descent, is a particular kind of proof by contradiction used to show that a statement cannot possibly hold for any number, by showing that if the statement were to hold for a number, then the same would be true for a smaller number, leading to an infinite descent and ultimately a contradiction. It is a method which relies on the well-ordering principle, and is often used to show that a given equation, such as a Diophantine equation, has no solutions. Typically, one shows that if a solution to a problem existed, which in some sense was related to one or more natural numbers, it would necessarily imply that a second solution existed, which was related to one or more 'smaller' natural numbers. This in turn would imply a third solution related to smaller natural numbers, implying a fourth solution, therefore a fifth solution, and so on. However, there cannot be an infinity of ever-smaller natural numbers, and t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Galois Cohomology
In mathematics, Galois cohomology is the study of the group cohomology of Galois modules, that is, the application of homological algebra to modules for Galois groups. A Galois group ''G'' associated to a field extension ''L''/''K'' acts in a natural way on some abelian groups, for example those constructed directly from ''L'', but also through other Galois representations that may be derived by more abstract means. Galois cohomology accounts for the way in which taking Galois-invariant elements fails to be an exact functor. History The current theory of Galois cohomology came together around 1950, when it was realised that the Galois cohomology of ideal class groups in algebraic number theory was one way to formulate class field theory, at the time it was in the process of ridding itself of connections to L-functions. Galois cohomology makes no assumption that Galois groups are abelian groups, so this was a non-abelian theory. It was formulated abstractly as a theory of class ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Selmer Group
In arithmetic geometry, the Selmer group, named in honor of the work of by , is a group constructed from an isogeny of abelian varieties. The Selmer group of an isogeny The Selmer group of an abelian variety ''A'' with respect to an isogeny ''f'' : ''A'' → ''B'' of abelian varieties can be defined in terms of Galois cohomology as :\operatorname^(A/K)=\bigcap_v\ker(H^1(G_K,\ker(f))\rightarrow H^1(G_,A_v /\operatorname(\kappa_v)) where ''A''v 'f''denotes the ''f''-torsion of ''A''v and \kappa_v is the local Kummer map B_v(K_v)/f(A_v(K_v))\rightarrow H^1(G_,A_v . Note that H^1(G_,A_v /\operatorname(\kappa_v) is isomorphic to H^1(G_,A_v) /math>. Geometrically, the principal homogeneous spaces coming from elements of the Selmer group have ''K''v-rational points for all places ''v'' of ''K''. The Selmer group is finite. This implies that the part of the Tate–Shafarevich group killed by ''f'' is finite due to the following exact sequence : 0 → ''B''(''K'')/ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Diophantine Approximation
In number theory, the study of Diophantine approximation deals with the approximation of real numbers by rational numbers. It is named after Diophantus of Alexandria. The first problem was to know how well a real number can be approximated by rational numbers. For this problem, a rational number ''a''/''b'' is a "good" approximation of a real number ''α'' if the absolute value of the difference between ''a''/''b'' and ''α'' may not decrease if ''a''/''b'' is replaced by another rational number with a smaller denominator. This problem was solved during the 18th century by means of continued fractions. Knowing the "best" approximations of a given number, the main problem of the field is to find sharp upper and lower bounds of the above difference, expressed as a function of the denominator. It appears that these bounds depend on the nature of the real numbers to be approximated: the lower bound for the approximation of a rational number by another rational number is larger than ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Geometry Of Numbers
Geometry of numbers is the part of number theory which uses geometry for the study of algebraic numbers. Typically, a ring of algebraic integers is viewed as a lattice in \mathbb R^n, and the study of these lattices provides fundamental information on algebraic numbers. The geometry of numbers was initiated by . The geometry of numbers has a close relationship with other fields of mathematics, especially functional analysis and Diophantine approximation, the problem of finding rational numbers that approximate an irrational quantity. Minkowski's results Suppose that \Gamma is a lattice in n-dimensional Euclidean space \mathbb^n and K is a convex centrally symmetric body. Minkowski's theorem, sometimes called Minkowski's first theorem, states that if \operatorname (K)>2^n \operatorname(\mathbb^n/\Gamma), then K contains a nonzero vector in \Gamma. The successive minimum \lambda_k is defined to be the inf of the numbers \lambda such that \lambda K contains k linearly independ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Elliptic Curve
In mathematics, an elliptic curve is a smooth, projective, algebraic curve of genus one, on which there is a specified point . An elliptic curve is defined over a field and describes points in , the Cartesian product of with itself. If the field's characteristic is different from 2 and 3, then the curve can be described as a plane algebraic curve which consists of solutions for: :y^2 = x^3 + ax + b for some coefficients and in . The curve is required to be non-singular, which means that the curve has no cusps or self-intersections. (This is equivalent to the condition , that is, being square-free in .) It is always understood that the curve is really sitting in the projective plane, with the point being the unique point at infinity. Many sources define an elliptic curve to be simply a curve given by an equation of this form. (When the coefficient field has characteristic 2 or 3, the above equation is not quite general enough to include all non-singular cubic cu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Faculty Of Mathematics, University Of Cambridge
The Faculty of Mathematics at the University of Cambridge comprises the Department of Pure Mathematics and Mathematical Statistics (DPMMS) and the Department of Applied Mathematics and Theoretical Physics (DAMTP). It is housed in the Centre for Mathematical Sciences site in West Cambridge, alongside the Isaac Newton Institute. Many distinguished mathematicians have been members of the faculty. Some current members DPMMS *Béla Bollobás * John Coates * Thomas Forster *Timothy Gowers * Peter Johnstone *Imre Leader *Gabriel Paternain Statistical Laboratory * John Aston *Geoffrey Grimmett *Frank Kelly *Ioannis Kontoyiannis *Richard Nickl * James Norris *Richard Samworth *David Spiegelhalter * Richard Weber DAMTP *Gary Gibbons * Julia Gog, professor of mathematical biology * Raymond E. Goldstein *Rich Kerswell *Paul Linden * Michael Green * Peter Haynes, fluid dynamicist * John Hinch, fluid dynamicist, retired 2014 *Richard Jozsa *Hugh Osborn *John Papaloizou * Malcolm Perry * D ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sadleirian Professor Of Pure Mathematics
The Sadleirian Professorship of Pure Mathematics, originally spelled in the statutes and for the first two professors as Sadlerian, is a professorship in pure mathematics within the DPMMS at the University of Cambridge. It was founded on a bequest from Lady Mary Sadleir for lectureships "for the full and clear explication and teaching that part of mathematical knowledge commonly called algebra". She died in 1706 and lectures began in 1710 but eventually these failed to attract undergraduates. In 1860 the foundation was used to establish the professorship. On 10 June 1863 Arthur Cayley was elected with the statutory duty "to explain and teach the principles of pure mathematics, and to apply himself to the advancement of that science." The stipend attached to the professorship was modest although it improved in the course of subsequent legislation. List of Sadlerian Lecturers of Pure Mathematics *1746–1769 William Ludlam *1826–1835 Lawrence Stephenson List of Sadleirian Lecture ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Royal Society Of London
The Royal Society, formally The Royal Society of London for Improving Natural Knowledge, is a learned society and the United Kingdom's national academy of sciences. The society fulfils a number of roles: promoting science and its benefits, recognising excellence in science, supporting outstanding science, providing scientific advice for policy, education and public engagement and fostering international and global co-operation. Founded on 28 November 1660, it was granted a royal charter by King Charles II as The Royal Society and is the oldest continuously existing scientific academy in the world. The society is governed by its Council, which is chaired by the Society's President, according to a set of statutes and standing orders. The members of Council and the President are elected from and by its Fellows, the basic members of the society, who are themselves elected by existing Fellows. , there are about 1,700 fellows, allowed to use the postnominal title FRS (Fellow of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Reader (academic Rank)
The title of reader in the United Kingdom and some universities in the Commonwealth of Nations, for example India, Australia and New Zealand, denotes an appointment for a senior academic with a distinguished international reputation in research or scholarship. In the traditional hierarchy of British and other Commonwealth universities, reader (and principal lecturer in the new universities) are academic ranks above senior lecturer and below professor, recognising a distinguished record of original research. Reader is similar to a professor without a chair, similar to the distinction between ''professor extraordinarius'' and ''professor ordinarius'' at some European universities, professor and chaired professor in Hong Kong and "professor name" (or associate professor) and chaired professor in Ireland. Readers and professors in the UK would correspond to full professors in the United States.Graham WebbMaking the most of appraisal: career and professional development planning for le ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]