Iwasawa Group
   HOME
*





Iwasawa Group
__NOTOC__ In mathematics, a group is called an Iwasawa group, M-group or modular group if its lattice of subgroups is modular. Alternatively, a group ''G'' is called an Iwasawa group when every subgroup of ''G'' is permutable in ''G'' . proved that a ''p''-group ''G'' is an Iwasawa group if and only if one of the following cases happens: * ''G'' is a Dedekind group, or * ''G'' contains an abelian normal subgroup ''N'' such that the quotient group ''G/N'' is a cyclic group and if ''q'' denotes a generator of ''G/N'', then for all ''n'' ∈ ''N'', ''q''−1''nq'' = ''n''1+''p''''s'' where ''s'' ≥ 1 in general, but ''s'' ≥ 2 for ''p''=2. In , Iwasawa's proof was deemed to have essential gaps, which were filled by Franco Napolitani and Zvonimir Janko Zvonimir Janko (26 July 1932 – 12 April 2022) was a Croatian mathematician who was the eponym of the Janko groups, sporadic simple groups in group theory. The first few sporadic simple groups were discovered by Émile ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cyclic Group
In group theory, a branch of abstract algebra in pure mathematics, a cyclic group or monogenous group is a group, denoted C''n'', that is generated by a single element. That is, it is a set of invertible elements with a single associative binary operation, and it contains an element ''g'' such that every other element of the group may be obtained by repeatedly applying the group operation to ''g'' or its inverse. Each element can be written as an integer power of ''g'' in multiplicative notation, or as an integer multiple of ''g'' in additive notation. This element ''g'' is called a ''generator'' of the group. Every infinite cyclic group is isomorphic to the additive group of Z, the integers. Every finite cyclic group of order ''n'' is isomorphic to the additive group of Z/''n''Z, the integers modulo ''n''. Every cyclic group is an abelian group (meaning that its group operation is commutative), and every finitely generated abelian group ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematische Zeitschrift
''Mathematische Zeitschrift'' (German for ''Mathematical Journal'') is a mathematical journal for pure and applied mathematics published by Springer Verlag. It was founded in 1918 and edited by Leon Lichtenstein together with Konrad Knopp, Erhard Schmidt, and Issai Schur. Past editors include Erich Kamke, Friedrich Karl Schmidt, Rolf Nevanlinna, Helmut Wielandt, and Olivier Debarre Olivier Debarre (born 1959) is a French mathematician who specializes in complex algebraic geometry.Debarr ...
.


External links

* * Mathematics journals Publications established in 1918 {{math ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Product Of Group Subsets
In mathematics, one can define a product of group subsets in a natural way. If ''S'' and ''T'' are subsets of a group ''G'', then their product is the subset of ''G'' defined by :ST = \. The subsets ''S'' and ''T'' need not be subgroups for this product to be well defined. The associativity of this product follows from that of the group product. The product of group subsets therefore defines a natural monoid structure on the power set of ''G''. A lot more can be said in the case where ''S'' and ''T'' are subgroups. The product of two subgroups ''S'' and ''T'' of a group ''G'' is itself a subgroup of ''G'' if and only if ''ST'' = ''TS''. Product of subgroups If ''S'' and ''T'' are subgroups of ''G'', their product need not be a subgroup (for example, two distinct subgroups of order 2 in the symmetric group on 3 symbols). This product is sometimes called the ''Frobenius product''. In general, the product of two subgroups ''S'' and ''T'' is a subgroup if and only if ''ST'' = ''TS'', ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quasidihedral Group
In mathematics, the quasi-dihedral groups, also called semi-dihedral groups, are certain non-abelian groups of order a power of 2. For every positive integer ''n'' greater than or equal to 4, there are exactly four isomorphism classes of non-abelian groups of order 2''n'' which have a cyclic subgroup of index 2. Two are well known, the generalized quaternion group and the dihedral group. One of the remaining two groups is often considered particularly important, since it is an example of a 2-group of maximal nilpotency class. In Bertram Huppert's text ''Endliche Gruppen'', this group is called a "Quasidiedergruppe". In Daniel Gorenstein's text, ''Finite Groups'', this group is called the "semidihedral group". Dummit and Foote refer to it as the "quasidihedral group"; we adopt that name in this article. All give the same presentation for this group: :\langle r,s \mid r^ = s^2 = 1,\ srs = r^\rangle\,\!. The other non-abelian 2-group with cyclic subgroup of index 2 is not ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


PT-group
__NOTOC__ In mathematics, in the field of group theory, a quasinormal subgroup, or permutable subgroup, is a subgroup of a group that commutes (permutes) with every other subgroup with respect to the product of subgroups. The term ''quasinormal subgroup'' was introduced by Øystein Ore in 1937. Two subgroups are said to permute (or commute) if any element from the first subgroup, times an element of the second subgroup, can be written as an element of the second subgroup, times an element of the first subgroup. That is, H and K as subgroups of G are said to commute if ''HK'' = ''KH'', that is, any element of the form hk with h \in H and k \in K can be written in the form k'h' where k' \in K and h' \in H. Every normal subgroup is quasinormal, because a normal subgroup commutes with every element of the group. The converse is not true. For instance, any extension of a cyclic p-group by another cyclic p-group for the same (odd) prime has the property that all its subgroups are quasin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Subnormal Subgroup
In mathematics, in the field of group theory, a subgroup ''H'' of a given group ''G'' is a subnormal subgroup of ''G'' if there is a finite chain of subgroups of the group, each one normal in the next, beginning at ''H'' and ending at ''G''. In notation, H is k-subnormal in G if there are subgroups :H=H_0,H_1,H_2,\ldots, H_k=G of G such that H_i is normal in H_ for each i. A subnormal subgroup is a subgroup that is k-subnormal for some positive integer k. Some facts about subnormal subgroups: * A 1-subnormal subgroup is a proper normal subgroup (and vice versa). * A finitely generated group is nilpotent if and only if each of its subgroups is subnormal. * Every quasinormal subgroup, and, more generally, every conjugate-permutable subgroup, of a finite group is subnormal. * Every pronormal subgroup that is also subnormal, is normal. In particular, a Sylow subgroup is subnormal if and only if it is normal. * Every 2-subnormal subgroup is a conjugate-permutable subgroup. The proper ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Zvonimir Janko
Zvonimir Janko (26 July 1932 – 12 April 2022) was a Croatian mathematician who was the eponym of the Janko groups, sporadic simple groups in group theory. The first few sporadic simple groups were discovered by Émile Léonard Mathieu, which were then called the Mathieu groups. It was after 90 years of the discovery of the last Mathieu group that Zvonimir Janko constructed a new sporadic simple group in 1964. In his honour, this group is now called J1. This discovery launched the modern theory of sporadic groups and it was an important milestone in the classification of finite simple groups. Biography Janko was born in Bjelovar, Croatia. He studied at the University of Zagreb where he received Ph.D. in 1960, with advisor Vladimir Devidé. The title of the thesis was ''Dekompozicija nekih klasa nedegeneriranih Rédeiovih grupa na Schreierova proširenja'' (Decomposition of some classes of nondegenerate Rédei Groups on Schreier extensions), in which he solved a problem posed b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Franco Napolitani
Franco may refer to: Name * Franco (name) * Francisco Franco (1892–1975), Spanish general and dictator of Spain from 1939 to 1975 * Franco Luambo (1938–1989), Congolese musician, the "Grand Maître" Prefix * Franco, a prefix used when referring to France, a country * Franco, a prefix used when referring to French people and their diaspora, e.g. Franco-Americans, Franco-Mauritians * Franco, a prefix used when referring to Franks, a West Germanic tribe Places * El Franco, a municipality of Asturias in Spain * Presidente Franco District, in Paraguay * Franco, Virginia, an unincorporated community, in the United States Other uses * Franco (band), Filipino band * Franco (''General Hospital''), a fictional character on the American soap opera ''General Hospital'' * Franco, the Luccan franc, a 19th-century currency of Lucca, Italy * ''Franco, Ciccio e il pirata Barbanera'', a 1969 Italian comedy film directed by Mario Amendola * ''Franco, ese hombre'', a 1964 documentary fi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quotient Group
A quotient group or factor group is a mathematical group obtained by aggregating similar elements of a larger group using an equivalence relation that preserves some of the group structure (the rest of the structure is "factored" out). For example, the cyclic group of addition modulo ''n'' can be obtained from the group of integers under addition by identifying elements that differ by a multiple of n and defining a group structure that operates on each such class (known as a congruence class) as a single entity. It is part of the mathematical field known as group theory. For a congruence relation on a group, the equivalence class of the identity element is always a normal subgroup of the original group, and the other equivalence classes are precisely the cosets of that normal subgroup. The resulting quotient is written G\,/\,N, where G is the original group and N is the normal subgroup. (This is pronounced G\bmod N, where \mbox is short for modulo.) Much of the importance o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group (mathematics)
In mathematics, a group is a Set (mathematics), set and an Binary operation, operation that combines any two Element (mathematics), elements of the set to produce a third element of the set, in such a way that the operation is Associative property, associative, an identity element exists and every element has an Inverse element, inverse. These three axioms hold for Number#Main classification, number systems and many other mathematical structures. For example, the integers together with the addition operation form a group. The concept of a group and the axioms that define it were elaborated for handling, in a unified way, essential structural properties of very different mathematical entities such as numbers, geometric shapes and polynomial roots. Because the concept of groups is ubiquitous in numerous areas both within and outside mathematics, some authors consider it as a central organizing principle of contemporary mathematics. In geometry groups arise naturally in the study of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Normal Subgroup
In abstract algebra, a normal subgroup (also known as an invariant subgroup or self-conjugate subgroup) is a subgroup that is invariant under conjugation by members of the group of which it is a part. In other words, a subgroup N of the group G is normal in G if and only if gng^ \in N for all g \in G and n \in N. The usual notation for this relation is N \triangleleft G. Normal subgroups are important because they (and only they) can be used to construct quotient groups of the given group. Furthermore, the normal subgroups of G are precisely the kernels of group homomorphisms with domain G, which means that they can be used to internally classify those homomorphisms. Évariste Galois was the first to realize the importance of the existence of normal subgroups. Definitions A subgroup N of a group G is called a normal subgroup of G if it is invariant under conjugation; that is, the conjugation of an element of N by an element of G is always in N. The usual notation for this re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]