Isogonal Apeirogon2c
Isogonal is a mathematical term which means "having similar angles". It occurs in several contexts: * Isogonal polygon, polyhedron, polytope or tiling. *Isogonal trajectory in curve theory. *Isogonal conjugate in triangle geometry. An Isogonal is also the name for a line connecting points at which the magnetic declination Magnetic declination, or magnetic variation, is the angle on the horizontal plane between magnetic north (the direction the north end of a magnetized compass needle points, corresponding to the direction of the Earth's magnetic field lines) and ... is the same. {{disambig Geometry ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Isogonal Figure
In geometry, a polytope (e.g. a polygon or polyhedron) or a tiling is isogonal or vertex-transitive if all its vertices are equivalent under the symmetries of the figure. This implies that each vertex is surrounded by the same kinds of face in the same or reverse order, and with the same angles between corresponding faces. Technically, one says that for any two vertices there exists a symmetry of the polytope mapping the first isometrically onto the second. Other ways of saying this are that the group of automorphisms of the polytope ''acts transitively'' on its vertices, or that the vertices lie within a single '' symmetry orbit''. All vertices of a finite -dimensional isogonal figure exist on an -sphere. The term isogonal has long been used for polyhedra. Vertex-transitive is a synonym borrowed from modern ideas such as symmetry groups and graph theory. The pseudorhombicuboctahedronwhich is ''not'' isogonaldemonstrates that simply asserting that "all vertices look the s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Isogonal Trajectory
In mathematics an orthogonal trajectory is a curve, which intersects any curve of a given pencil of (planar) curves ''orthogonally''. For example, the orthogonal trajectories of a pencil of ''concentric circles'' are the lines through their common center (see diagram). Suitable methods for the determination of orthogonal trajectories are provided by solving differential equations. The standard method establishes a first order ordinary differential equation and solves it by separation of variables. Both steps may be difficult or even impossible. In such cases one has to apply numerical methods. Orthogonal trajectories are used in mathematics for example as curved coordinate systems (i.e. elliptic coordinates) or appear in physics as electric fields and their equipotential curves. If the trajectory intersects the given curves by an arbitrary (but fixed) angle, one gets an isogonal trajectory. Determination of the orthogonal trajectory In cartesian coordinates Generally one as ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Isogonal Conjugate
__notoc__ In geometry, the isogonal conjugate of a point with respect to a triangle is constructed by reflecting the lines about the angle bisectors of respectively. These three reflected lines concur at the isogonal conjugate of . (This definition applies only to points not on a sideline of triangle .) This is a direct result of the trigonometric form of Ceva's theorem. The isogonal conjugate of a point is sometimes denoted by . The isogonal conjugate of is . The isogonal conjugate of the incentre is itself. The isogonal conjugate of the orthocentre is the circumcentre . The isogonal conjugate of the centroid is (by definition) the symmedian point . The isogonal conjugates of the Fermat points are the isodynamic points and vice versa. The Brocard points are isogonal conjugates of each other. In trilinear coordinates, if X=x:y:z is a point not on a sideline of triangle , then its isogonal conjugate is \tfrac : \tfrac : \tfrac. For this reason, the isogonal conjuga ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Magnetic Declination
Magnetic declination, or magnetic variation, is the angle on the horizontal plane between magnetic north (the direction the north end of a magnetized compass needle points, corresponding to the direction of the Earth's magnetic field lines) and true north (the direction along a meridian towards the geographic North Pole). This angle varies depending on position on the Earth's surface and changes over time. Somewhat more formally, Bowditch defines variation as “the angle between the magnetic and geographic meridians at any place, expressed in degrees and minutes east or west to indicate the direction of magnetic north from true north. The angle between magnetic and grid meridians is called grid magnetic angle, grid variation, or grivation.” By convention, declination is positive when magnetic north is east of true north, and negative when it is to the west. ''Isogonic lines'' are lines on the Earth's surface along which the declination has the same constant value, and line ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |