Inverse Function Integration
In mathematics, integrals of inverse functions can be computed by means of a formula that expresses the antiderivatives of the inverse f^ of a continuous and invertible function in terms of f^ and an antiderivative of This formula was published in 1905 by Charles-Ange Laisant. Statement of the theorem Let I_1 and I_2 be two intervals of Assume that f: I_1\to I_2 is a continuous and invertible function. It follows from the intermediate value theorem that f is strictly monotone. Consequently, f maps intervals to intervals, so is an open map and thus a homeomorphism. Since f and the inverse function f^:I_2\to I_1 are continuous, they have antiderivatives by the fundamental theorem of calculus. Laisant proved that if F is an antiderivative of then the antiderivatives of f^ are: :\int f^(y) \, dy = y f^(y) - F \circ f^(y)+C, where C is an arbitrary real number. Note that it is not assumed that f^is differentiable. In his 1905 article, Laisant gave three proofs. First, unde ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
The American Mathematical Monthly
''The American Mathematical Monthly'' is a mathematical journal founded by Benjamin Finkel in 1894. It is published ten times each year by Taylor & Francis for the Mathematical Association of America. The ''American Mathematical Monthly'' is an expository journal intended for a wide audience of mathematicians, from undergraduate students to research professionals. Articles are chosen on the basis of their broad interest and reviewed and edited for quality of exposition as well as content. In this the ''American Mathematical Monthly'' fulfills a different role from that of typical mathematical research journals. The ''American Mathematical Monthly'' is the most widely read mathematics journal in the world according to records on JSTOR. Tables of contents with article abstracts from 1997–2010 are availablonline The MAA gives the Lester R. Ford Awards annually to "authors of articles of expository excellence" published in the ''American Mathematical Monthly''. Editors *2022 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics Magazine
''Mathematics Magazine'' is a refereed bimonthly publication of the Mathematical Association of America. Its intended audience is teachers of collegiate mathematics, especially at the junior/senior level, and their students. It is explicitly a journal of mathematics rather than pedagogy. Rather than articles in the terse "theorem-proof" style of research journals, it seeks articles which provide a context for the mathematics they deliver, with examples, applications, illustrations, and historical background. Paid circulation in 2008 was 9,500 and total circulation was 10,000. ''Mathematics Magazine'' is a continuation of ''Mathematics News Letter'' (1926-1934) and ''National Mathematics Magazine'' (1934-1945.) Doris Schattschneider became the first female editor of ''Mathematics Magazine'' in 1981. .. The MAA gives the Carl B. Allendoerfer Awards annually "for articles of expository excellence" published in ''Mathematics Magazine''. See also *''American Mathematical Monthl ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Young's Inequality For Products
In mathematics, Young's inequality for products is a mathematical inequality about the product of two numbers. The inequality is named after William Henry Young and should not be confused with Young's convolution inequality. Young's inequality for products can be used to prove Hölder's inequality. It is also widely used to estimate the norm of nonlinear terms in PDE theory, since it allows one to estimate a product of two terms by a sum of the same terms raised to a power and scaled. Standard version for conjugate Hölder exponents The standard form of the inequality is the following: It can be used to prove Hölder's inequality. This form of Young's inequality can also be proved via Jensen's inequality. Young's inequality may equivalently be written as a^\alpha b^\beta \leq \alpha a + \beta b, \qquad\, 0 \leq \alpha, \beta \leq 1, \quad\ \alpha + \beta = 1. Where this is just the concavity of the logarithm function. Equality holds if and only if a = b or \ = \. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Legendre Transformation
In mathematics, the Legendre transformation (or Legendre transform), named after Adrien-Marie Legendre, is an involutive transformation on real-valued convex functions of one real variable. In physical problems, it is used to convert functions of one quantity (such as velocity, pressure, or temperature) into functions of the conjugate quantity (momentum, volume, and entropy, respectively). In this way, it is commonly used in classical mechanics to derive the Hamiltonian formalism out of the Lagrangian formalism (or vice versa) and in thermodynamics to derive the thermodynamic potentials, as well as in the solution of differential equations of several variables. For sufficiently smooth functions on the real line, the Legendre transform f^* of a function f can be specified, up to an additive constant, by the condition that the functions' first derivatives are inverse functions of each other. This can be expressed in Euler's derivative notation as Df(\cdot) = \left( D f^* \r ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Integration By Parts
In calculus, and more generally in mathematical analysis, integration by parts or partial integration is a process that finds the integral of a product of functions in terms of the integral of the product of their derivative and antiderivative. It is frequently used to transform the antiderivative of a product of functions into an antiderivative for which a solution can be more easily found. The rule can be thought of as an integral version of the product rule of differentiation. The integration by parts formula states: \begin \int_a^b u(x) v'(x) \, dx & = \Big (x) v(x)\Biga^b - \int_a^b u'(x) v(x) \, dx\\ & = u(b) v(b) - u(a) v(a) - \int_a^b u'(x) v(x) \, dx. \end Or, letting u = u(x) and du = u'(x) \,dx while v = v(x) and dv = v'(x) \, dx, the formula can be written more compactly: \int u \, dv \ =\ uv - \int v \, du. Mathematician Brook Taylor discovered integration by parts, first publishing the idea in 1715. More general formulations of integration by parts ex ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Biholomorphism
In the mathematical theory of functions of one or more complex variables, and also in complex algebraic geometry, a biholomorphism or biholomorphic function is a bijective holomorphic function whose inverse is also holomorphic. Formal definition Formally, a ''biholomorphic function'' is a function \phi defined on an open subset ''U'' of the n-dimensional complex space C''n'' with values in C''n'' which is holomorphic and one-to-one, such that its image is an open set V in C''n'' and the inverse \phi^:V\to U is also holomorphic. More generally, ''U'' and ''V'' can be complex manifolds. As in the case of functions of a single complex variable, a sufficient condition for a holomorphic map to be biholomorphic onto its image is that the map is injective, in which case the inverse is also holomorphic (e.g., see Gunning 1990, Theorem I.11). If there exists a biholomorphism \phi \colon U \to V, we say that ''U'' and ''V'' are biholomorphically equivalent or that they are biholomo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Integration By Substitution
In calculus, integration by substitution, also known as ''u''-substitution, reverse chain rule or change of variables, is a method for evaluating integrals and antiderivatives. It is the counterpart to the chain rule for differentiation, and can loosely be thought of as using the chain rule "backwards". Substitution for a single variable Introduction Before stating the result rigorously, consider a simple case using indefinite integrals. Compute \textstyle\int(2x^3+1)^7(x^2)\,dx. Set u=2x^3+1. This means \textstyle\frac=6x^2, or in differential form, du=6x^2\,dx. Now :\int(2x^3 +1)^7(x^2)\,dx = \frac\int\underbrace_\underbrace_=\frac\int u^\,du=\frac\left(\fracu^\right)+C=\frac(2x^3+1)^+C, where C is an arbitrary constant of integration. This procedure is frequently used, but not all integrals are of a form that permits its use. In any event, the result should be verified by differentiating and comparing to the original integrand. :\frac\left frac(2x^3+1)^+C\right\ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Homeomorphic
In the mathematical field of topology, a homeomorphism, topological isomorphism, or bicontinuous function is a bijective and continuous function between topological spaces that has a continuous inverse function. Homeomorphisms are the isomorphisms in the category of topological spaces—that is, they are the mappings that preserve all the topological properties of a given space. Two spaces with a homeomorphism between them are called homeomorphic, and from a topological viewpoint they are the same. The word ''homeomorphism'' comes from the Greek words '' ὅμοιος'' (''homoios'') = similar or same and '' μορφή'' (''morphē'') = shape or form, introduced to mathematics by Henri Poincaré in 1895. Very roughly speaking, a topological space is a geometric object, and the homeomorphism is a continuous stretching and bending of the object into a new shape. Thus, a square and a circle are homeomorphic to each other, but a sphere and a torus are not. However, this ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Integration By Parts
In calculus, and more generally in mathematical analysis, integration by parts or partial integration is a process that finds the integral of a product of functions in terms of the integral of the product of their derivative and antiderivative. It is frequently used to transform the antiderivative of a product of functions into an antiderivative for which a solution can be more easily found. The rule can be thought of as an integral version of the product rule of differentiation. The integration by parts formula states: \begin \int_a^b u(x) v'(x) \, dx & = \Big (x) v(x)\Biga^b - \int_a^b u'(x) v(x) \, dx\\ & = u(b) v(b) - u(a) v(a) - \int_a^b u'(x) v(x) \, dx. \end Or, letting u = u(x) and du = u'(x) \,dx while v = v(x) and dv = v'(x) \, dx, the formula can be written more compactly: \int u \, dv \ =\ uv - \int v \, du. Mathematician Brook Taylor discovered integration by parts, first publishing the idea in 1715. More general formulations of integration by parts ex ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Stieltjes Integral
Thomas Joannes Stieltjes (, 29 December 1856 – 31 December 1894) was a Dutch mathematician. He was a pioneer in the field of moment problems and contributed to the study of continued fractions. The Thomas Stieltjes Institute for Mathematics at Leiden University, dissolved in 2011, was named after him, as is the Riemann–Stieltjes integral. Biography Stieltjes was born in Zwolle on 29 December 1856. His father (who had the same first names) was a civil engineer and politician. Stieltjes Sr. was responsible for the construction of various harbours around Rotterdam, and also seated in the Dutch parliament. Stieltjes Jr. went to university at the Polytechnical School in Delft in 1873. Instead of attending lectures, he spent his student years reading the works of Gauss and Jacobi — the consequence of this being he failed his examinations. There were 2 further failures (in 1875 and 1876), and his father despaired. His father was friends with H. G. van de Sande Bakhuyzen (who was t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Darboux Integral
In the branch of mathematics known as real analysis, the Darboux integral is constructed using Darboux sums and is one possible definition of the integral of a function. Darboux integrals are equivalent to Riemann integrals, meaning that a function is Darboux-integrable if and only if it is Riemann-integrable, and the values of the two integrals, if they exist, are equal. The definition of the Darboux integral has the advantage of being easier to apply in computations or proofs than that of the Riemann integral. Consequently, introductory textbooks on calculus and real analysis often develop Riemann integration using the Darboux integral, rather than the true Riemann integral. Moreover, the definition is readily extended to defining Riemann–Stieltjes integration. Darboux integrals are named after their inventor, Gaston Darboux (1842–1917). Definition The definition of the Darboux integral considers upper and lower (Darboux) integrals, which exist for any bounded real-val ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |