In the branch of
mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
known as
real analysis
In mathematics, the branch of real analysis studies the behavior of real numbers, sequences and series of real numbers, and real functions. Some particular properties of real-valued sequences and functions that real analysis studies include converg ...
, the Darboux integral is constructed using Darboux sums and is one possible definition of the
integral
In mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented i ...
of a
function
Function or functionality may refer to:
Computing
* Function key, a type of key on computer keyboards
* Function model, a structured representation of processes in a system
* Function object or functor or functionoid, a concept of object-oriente ...
. Darboux integrals are equivalent to
Riemann integral
In the branch of mathematics known as real analysis, the Riemann integral, created by Bernhard Riemann, was the first rigorous definition of the integral of a function on an interval. It was presented to the faculty at the University of Göt ...
s, meaning that a function is Darboux-integrable if and only if it is Riemann-integrable, and the values of the two integrals, if they exist, are equal. The definition of the Darboux integral has the advantage of being easier to apply in computations or proofs than that of the Riemann integral. Consequently, introductory textbooks on
calculus
Calculus, originally called infinitesimal calculus or "the calculus of infinitesimals", is the mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithm ...
and real analysis often develop Riemann integration using the Darboux integral, rather than the true Riemann integral. Moreover, the definition is readily extended to defining
Riemann–Stieltjes integration. Darboux integrals are named after their inventor,
Gaston Darboux
Jean-Gaston Darboux FAS MIF FRS FRSE (14 August 1842 – 23 February 1917) was a French mathematician.
Life
According this birth certificate he was born in Nîmes in France on 14 August 1842, at 1 am. However, probably due to the midnigh ...
(1842–1917).
Definition
The definition of the Darboux integral considers upper and lower (Darboux) integrals, which exist for any
bounded
Boundedness or bounded may refer to:
Economics
* Bounded rationality, the idea that human rationality in decision-making is bounded by the available information, the cognitive limitations, and the time available to make the decision
* Bounded e ...
real
Real may refer to:
Currencies
* Brazilian real (R$)
* Central American Republic real
* Mexican real
* Portuguese real
* Spanish real
* Spanish colonial real
Music Albums
* ''Real'' (L'Arc-en-Ciel album) (2000)
* ''Real'' (Bright album) (2010)
...
-valued function
on the
interval The Darboux integral exists if and only if the upper and lower integrals are equal. The upper and lower integrals are in turn the
infimum and supremum
In mathematics, the infimum (abbreviated inf; plural infima) of a subset S of a partially ordered set P is a greatest element in P that is less than or equal to each element of S, if such an element exists. Consequently, the term ''greatest low ...
, respectively, of upper and lower (Darboux) sums which over- and underestimate, respectively, the "area under the curve." In particular, for a given partition of the interval of integration, the upper and lower sums add together the areas of rectangular slices whose heights are the supremum and infimum, respectively, of ''f'' in each subinterval of the partition. These ideas are made precise below:
Darboux sums
A
partition of an interval
In mathematics, a partition of an interval on the real line is a finite sequence of real numbers such that
:.
In other terms, a partition of a compact interval is a strictly increasing sequence of numbers (belonging to the interval itself) ...