HOME
*





Intrinsic Volumes
In mathematics, more specifically, in convex geometry, the mixed volume is a way to associate a non-negative number to an of convex bodies in space. This number depends on the size and shape of the bodies and on their relative orientation to each other. Definition Let K_1, K_2, \dots, K_r be convex bodies in \mathbb^n and consider the function : f(\lambda_1, \ldots, \lambda_r) = \mathrm_n (\lambda_1 K_1 + \cdots + \lambda_r K_r), \qquad \lambda_i \geq 0, where \text_n stands for the n-dimensional volume and its argument is the Minkowski sum of the scaled convex bodies K_i. One can show that f is a homogeneous polynomial of degree n, therefore it can be written as : f(\lambda_1, \ldots, \lambda_r) = \sum_^r V(K_, \ldots, K_) \lambda_ \cdots \lambda_, where the functions V are symmetric. For a particular index function j \in \^n , the coefficient V(K_, \dots, K_) is called the mixed volume of K_, \dots, K_. Properties * The mixed volume is uniquely determined by t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Convex Geometry
In mathematics, convex geometry is the branch of geometry studying convex sets, mainly in Euclidean space. Convex sets occur naturally in many areas: computational geometry, convex analysis, discrete geometry, functional analysis, geometry of numbers, integral geometry, linear programming, probability theory, game theory, etc. Classification According to the Mathematics Subject Classification MSC2010, the mathematical discipline ''Convex and Discrete Geometry'' includes three major branches: * general convexity * polytopes and polyhedra * discrete geometry (though only portions of the latter two are included in convex geometry). General convexity is further subdivided as follows: *axiomatic and generalized convexity *convex sets without dimension restrictions *convex sets in topological vector spaces *convex sets in 2 dimensions (including convex curves) *convex sets in 3 dimensions (including convex surfaces) *convex sets in ''n'' dimensions (including convex hy ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Convex Body
In mathematics, a convex body in n-dimensional Euclidean space \R^n is a compact convex set with non-empty interior. A convex body K is called symmetric if it is centrally symmetric with respect to the origin; that is to say, a point x lies in K if and only if its antipode, - x also lies in K. Symmetric convex bodies are in a one-to-one correspondence with the unit balls of norms on \R^n. Important examples of convex bodies are the Euclidean ball, the hypercube In geometry, a hypercube is an ''n''-dimensional analogue of a square () and a cube (). It is a closed, compact, convex figure whose 1- skeleton consists of groups of opposite parallel line segments aligned in each of the space's dimensions, ... and the cross-polytope. See also * * References * {{Authority control Multi-dimensional geometry ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Minkowski Sum
In geometry, the Minkowski sum (also known as dilation) of two sets of position vectors ''A'' and ''B'' in Euclidean space is formed by adding each vector in ''A'' to each vector in ''B'', i.e., the set : A + B = \. Analogously, the Minkowski difference (or geometric difference) is defined using the complement operation as : A - B = \left(A^c + (-B)\right)^c In general A - B \ne A + (-B). For instance, in a one-dimensional case A = 2, 2/math> and B = 1, 1/math> the Minkowski difference A - B = 1, 1/math>, whereas A + (-B) = A + B = 3, 3 In a two-dimensional case, Minkowski difference is closely related to erosion (morphology) in image processing. The concept is named for Hermann Minkowski. Example For example, if we have two sets ''A'' and ''B'', each consisting of three position vectors (informally, three points), representing the vertices of two triangles in \mathbb^2, with coordinates :A = \ and :B = \ then their Minkowski sum is :A + B = \ which comp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Homogeneous Polynomial
In mathematics, a homogeneous polynomial, sometimes called quantic in older texts, is a polynomial whose nonzero terms all have the same degree. For example, x^5 + 2 x^3 y^2 + 9 x y^4 is a homogeneous polynomial of degree 5, in two variables; the sum of the exponents in each term is always 5. The polynomial x^3 + 3 x^2 y + z^7 is not homogeneous, because the sum of exponents does not match from term to term. The function defined by a homogeneous polynomial is always a homogeneous function. An algebraic form, or simply form, is a function defined by a homogeneous polynomial. A binary form is a form in two variables. A ''form'' is also a function defined on a vector space, which may be expressed as a homogeneous function of the coordinates over any basis. A polynomial of degree 0 is always homogeneous; it is simply an element of the field or ring of the coefficients, usually called a constant or a scalar. A form of degree 1 is a linear form. A form of degree 2 is a quadratic fo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Aleksandr Danilovich Aleksandrov
Aleksandr Danilovich Aleksandrov (russian: Алекса́ндр Дани́лович Алекса́ндров, alternative transliterations: ''Alexandr'' or ''Alexander'' (first name), and ''Alexandrov'' (last name)) (4 August 1912 – 27 July 1999) was a Soviet/Russian mathematician, physicist, philosopher and mountaineer. Personal Life Aleksandr Aleksandrov was born in 1912 in Volyn, Ryazan Oblast. His father was a headmaster of a secondary school in St Petersburg and his mother a teacher at said school, thus the young Alekandrov spent a majority of his childhood in the city. His family was old Russian nobility—students noted ancestral portraits which hung in his office. His sisters were Soviet botanist Vera Danilovna Aleksandrov (RU) and Maria Danilovna Aleksandrova, author of the first monograph on gerontopsychology in the USSR. In 1937, he married a student of the Faculty of Physics, Marianna Leonidovna Georg. Together they had two children: Daria (b. 1948) and Daniil (R ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Werner Fenchel
Moritz Werner Fenchel (; 3 May 1905 – 24 January 1988) was a mathematician known for his contributions to geometry and to optimization theory. Fenchel established the basic results of convex analysis and nonlinear optimization theory which would, in time, serve as the foundation for nonlinear programming. A German-born Jew and early refugee from Nazi suppression of intellectuals, Fenchel lived most of his life in Denmark. Fenchel's monographs and lecture notes are considered influential. Biography Early life and education Fenchel was born on 3 May 1905 in Berlin, Germany, his younger brother was the Israeli film director and architect Heinz Fenchel. Fenchel studied mathematics and physics at the University of Berlin between 1923 and 1928. He wrote his doctorate thesis in geometry (''Über Krümmung und Windung geschlossener Raumkurven'') under Ludwig Bieberbach. Professorship in Germany From 1928 to 1933, Fenchel was Professor E. Landau's Assistant at the Univ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Minkowski's First Inequality For Convex Bodies
In mathematics, Minkowski's first inequality for convex bodies is a geometrical result due to the German mathematician Hermann Minkowski. The inequality is closely related to the Brunn–Minkowski inequality and the isoperimetric inequality. Statement of the inequality Let ''K'' and ''L'' be two ''n''-dimensional convex bodies in ''n''-dimensional Euclidean space R''n''. Define a quantity ''V''1(''K'', ''L'') by :n V_ (K, L) = \lim_ \frac, where ''V'' denotes the ''n''-dimensional Lebesgue measure and + denotes the Minkowski sum. Then :V_ (K, L) \geq V(K)^ V(L)^, with equality if and only if ''K'' and ''L'' are homothetic, i.e. are equal up to translation and dilation. Remarks * ''V''1 is just one example of a class of quantities known as ''mixed volumes''. * If ''L'' is the ''n''-dimensional unit ball Unit may refer to: Arts and entertainment * UNIT, a fictional military organization in the science fiction television series ''Doctor Who'' * Unit of action, a discrete ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Unit Ball
Unit may refer to: Arts and entertainment * UNIT, a fictional military organization in the science fiction television series ''Doctor Who'' * Unit of action, a discrete piece of action (or beat) in a theatrical presentation Music * ''Unit'' (album), 1997 album by the Australian band Regurgitator * The Units, a synthpunk band Television * ''The Unit'', an American television series * '' The Unit: Idol Rebooting Project'', South Korean reality TV survival show Business * Stock keeping unit, a discrete inventory management construct * Strategic business unit, a profit center which focuses on product offering and market segment * Unit of account, a monetary unit of measurement * Unit coin, a small coin or medallion (usually military), bearing an organization's insignia or emblem * Work unit, the name given to a place of employment in the People's Republic of China Science and technology Science and medicine * Unit, a vessel or section of a chemical plant * Blood unit, a measuremen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Jakob Steiner
Jakob Steiner (18 March 1796 – 1 April 1863) was a Swiss mathematician who worked primarily in geometry. Life Steiner was born in the village of Utzenstorf, Canton of Bern. At 18, he became a pupil of Heinrich Pestalozzi and afterwards studied at Heidelberg. Then, he went to Berlin, earning a livelihood there, as in Heidelberg, by tutoring. Here he became acquainted with A. L. Crelle, who, encouraged by his ability and by that of Niels Henrik Abel, then also staying at Berlin, founded his famous ''Journal'' (1826). After Steiner's publication (1832) of his ''Systematische Entwickelungen'' he received, through Carl Gustav Jacob Jacobi, who was then professor at Königsberg University, and earned an honorary degree there; and through the influence of Jacobi and of the brothers Alexander and Wilhelm von Humboldt a new chair of geometry was founded for him at Berlin (1834). This he occupied until his death in Bern on 1 April 1863. He was described by Thomas Hirst as follows: ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Valuation (geometry)
In geometry, a valuation is a finitely additive function on a collection of admissible subsets of a fixed set X with values in an abelian semigroup. For example, the Lebesgue measure is a valuation on finite unions of convex bodies (that is, non-empty compact convex sets) of Euclidean space \R^n. Other examples of valuations on finite unions of convex bodies are the surface area, the mean width, and the Euler characteristic. In the geometric setting, often continuity (or smoothness) conditions are imposed on valuations, but there are also purely discrete facets of the theory. In fact, the concept of valuation has its origin in the dissection theory of polytopes and in particular Hilbert's third problem, which has grown into a rich theory, heavily reliant on advanced tools from abstract algebra. Definition Let X be a set and \mathcal S be a collection of admissible subsets of X. A function \phi on \mathcal S with values in an abelian semigroup R is called a valuation if it satisfie ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]