HOME
*



picture info

Insertion Device
An insertion device (ID) is a component in modern synchrotron light sources, so called because they are "inserted" into accelerator tracks. They are periodic magnetic structures that stimulate highly brilliant, forward-directed synchrotron radiation emission by forcing a stored charged particle beam to perform wiggles, or undulations, as they pass through the device. This motion is caused by the Lorentz force, and it is from this oscillatory motion that we get the names for the two classes of device, which are known as wigglers and undulators. As well as creating a brighter light, some insertion devices enable tuning of the light so that different frequencies can be generated for different applications. History The theory behind undulators was developed by Vitaly Ginzburg in the USSR. However it was Motz and his team who in 1953 installed the first undulator in a linac at Stanford, using it to generate millimetre wave radiation through to visible light. It was not until the 1970 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




APS - Canted Insertion Device
APS or Aps or aps or similar may refer to: Education * Abbottabad Public School * Adarsh Public School, a public school in New Delhi, India * Alamogordo Public Schools * Albuquerque Public Schools, New Mexico, US school district * Allendale Public Schools * Indian Army Public Schools * Associated Public Schools of Victoria, independent school group, Australia * Atlanta Public Schools * Abbotsford Public School, in Abbotsford, New South Wales Places * Anápolis, Goiás, Brazil, IATA airport code * Apsley railway station, Apsley, England, National Rail code * Alba-la-Romaine, Ardèche, France, known as ''Aps'' until 1904 Science and medicine * Adenosine 5'-phosphosulfate, a metabolic precursor to 3'-Phosphoadenosine-5'-phosphosulfate, 3'-phosphoadenosine-5'-phosphosulfate (PAPS) * Advanced Photon Source, a synchrotron X-ray source at Argonne National Laboratory * Algebra of physical space * American Physical Society * American Physiological Society * American Phytopathological Soci ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Halbach Array
A Halbach array is a special arrangement of permanent magnets that augments the magnetic field on one side of the array while cancelling the field to near zero on the other side. This is achieved by having a spatially rotating pattern of magnetisation. The rotating pattern of permanent magnets (on the front face; on the left, up, right, down) can be continued indefinitely and have the same effect. The effect of this arrangement is roughly similar to many horseshoe magnets placed adjacent to each other, with similar poles touching. The principle was first invented by James (Jim) M. Winey of Magnepan in 1970, for the ideal case of continuously rotating magnetization, induced by a one-sided stripe-shaped coil. The effect was also discovered by John C. Mallinson in 1973, and these "one-sided flux" structures were initially described by him as a "curiosity", although at the time he recognized from this discovery the potential for significant improvements in magnetic tape techno ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bending Magnet
A dipole magnet is the simplest type of magnet. It has two poles, one north and one south. Its magnetic field lines form simple closed loops which emerge from the north pole, re-enter at the south pole, then pass through the body of the magnet. The simplest example of a dipole magnet is a ''bar magnet''. Bar Magnet" hyperphysics; http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/elemag.html/ref> Dipole magnets in accelerators In particle accelerators, a dipole magnet is the electromagnet used to create a homogeneous magnetic field over some distance. Particle motion in that field will be circular in a plane perpendicular to the field and collinear to the direction of particle motion and free in the direction orthogonal to it. Thus, a particle injected into a dipole magnet will travel on a circular or helical trajectory. By adding several dipole sections on the same plane, the bending radial effect of the beam increases. In accelerator physics, dipole magnets are used to re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bandwidth (signal Processing)
Bandwidth is the difference between the upper and lower frequencies in a continuous band of frequencies. It is typically measured in hertz, and depending on context, may specifically refer to ''passband bandwidth'' or ''baseband bandwidth''. Passband bandwidth is the difference between the upper and lower cutoff frequencies of, for example, a band-pass filter, a communication channel, or a signal spectrum. Baseband bandwidth applies to a low-pass filter or baseband signal; the bandwidth is equal to its upper cutoff frequency. Bandwidth in hertz is a central concept in many fields, including electronics, information theory, digital communications, radio communications, signal processing, and spectroscopy and is one of the determinants of the capacity of a given communication channel. A key characteristic of bandwidth is that any band of a given width can carry the same amount of information, regardless of where that band is located in the frequency spectrum. For example, a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Wiggler (synchrotron)
A wiggler is an insertion device in a synchrotron. It is a series of magnets designed to periodically laterally deflect ('wiggle') a beam of charged particles (invariably electrons or positrons) inside a storage ring of a synchrotron. These deflections create a change in acceleration which in turn produces emission of broad synchrotron radiation tangent to the curve, much like that of a bending magnet, but the intensity is higher due to the contribution of many magnetic dipoles in the wiggler. Furthermore, as the wavelength (λ) is decreased this means the frequency (ƒ) has increased. This increase of frequency is directly proportional to energy, hence, the wiggler creates a wavelength of light with a larger energy. A wiggler has a broader spectrum of radiation than an undulator. Typically the magnets in a wiggler are arranged in a Halbach array. The design shown above is usually known as a Halbach wiggler. History The first suggestion of a wiggler magnet to produce synchr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Speed Of Light
The speed of light in vacuum, commonly denoted , is a universal physical constant that is important in many areas of physics. The speed of light is exactly equal to ). According to the special theory of relativity, is the upper limit for the speed at which conventional matter or energy (and thus any signal carrying information) can travel through space. All forms of electromagnetic radiation, including visible light, travel at the speed of light. For many practical purposes, light and other electromagnetic waves will appear to propagate instantaneously, but for long distances and very sensitive measurements, their finite speed has noticeable effects. Starlight viewed on Earth left the stars many years ago, allowing humans to study the history of the universe by viewing distant objects. When communicating with distant space probes, it can take minutes to hours for signals to travel from Earth to the spacecraft and vice versa. In computing, the speed of light fixes ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Electron
The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no known components or substructure. The electron's mass is approximately 1/1836 that of the proton. Quantum mechanical properties of the electron include an intrinsic angular momentum ( spin) of a half-integer value, expressed in units of the reduced Planck constant, . Being fermions, no two electrons can occupy the same quantum state, in accordance with the Pauli exclusion principle. Like all elementary particles, electrons exhibit properties of both particles and waves: They can collide with other particles and can be diffracted like light. The wave properties of electrons are easier to observe with experiments than those of other particles like neutrons and protons because electrons have a lower mass and hence a longer de Broglie wavele ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Free Electron Laser
A free-electron laser (FEL) is a (fourth generation) light source producing extremely brilliant and short pulses of radiation. An FEL functions and behaves in many ways like a laser, but instead of using stimulated emission from atomic or molecular excitations, it employs relativistic electrons as a gain medium. Radiation is generated by a ''bunch'' of electrons passing through a magnetic structure (called undulator or wiggler). In an FEL, this radiation is further amplified as the radiation re-interacts with the electron bunch such that the electrons start to emit coherently, thus allowing an exponential increase in overall radiation intensity. As electron kinetic energy and undulator parameters can be adapted as desired, free-electron lasers are tunable and can be built for a wider frequency range than any other type of laser, currently ranging in wavelength from microwaves, through terahertz radiation and infrared, to the visible spectrum, ultraviolet, and X-ray. The first ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


List Of Synchrotron Radiation Facilities
This is a table of synchrotrons and storage rings used as synchrotron radiation sources, and free electron laser A free-electron laser (FEL) is a (fourth generation) light source producing extremely brilliant and short pulses of radiation. An FEL functions and behaves in many ways like a laser, but instead of using stimulated emission from atomic or molecula ...s. External links List from lightsources.org(includes links to individual light sources' websites) BioSync– a structural biologist's resource for high energy data collection facilities (includes links and instrument information for biological beamlines) X-ray Data Bookletref name=Xdb> References {{DEFAULTSORT:Synchrotron radiation facilities Free-electron lasers * Physics-related lists * ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Radiation Damping
Radiation damping in accelerator physics is a way of reducing the beam emittance of a high-velocity charged particle beam by synchrotron radiation. The two main ways of using radiation damping to reduce the emittance of a particle beam are the use of ''undulators'' and ''damping rings'' (often containing undulators), both relying on the same principle of inducing synchrotron radiation to reduce the particles' momentum, then replacing the momentum only in the desired direction of motion. Damping rings As particles are moving in a closed orbit, the lateral acceleration causes them to emit synchrotron radiation, thereby reducing the size of their momentum vectors (relative to the design orbit) without changing their orientation (ignoring quantum effects for the moment). In longitudinal direction, the loss of particle impulse due to radiation is replaced by accelerating sections ( RF cavities) that are installed in the beam path so that an equilibrium is reached at the design energy ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Beamline
In accelerator physics, a beamline refers to the trajectory of the beam of particles, including the overall construction of the path segment (guide tubes, diagnostic devices) along a specific path of an accelerator facility. This part is either * the line in a linear accelerator along which a beam of particles travels, or * the path leading from particle generator (e.g. a cyclic accelerator, synchrotron light sources, cyclotrons, or spallation sources) to the experimental end-station. Beamlines usually end in experimental stations that utilize particle beams or synchrotron light obtained from a synchrotron, or neutrons from a spallation source or research reactor. Beamlines are used in experiments in particle physics, materials science, life science, chemistry, and molecular biology, but can also be used for irradiation tests or to produce isotopes. Beamline in a particle accelerator In particle accelerators the beamline is usually housed in a tunnel and/or underground, c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Storage Ring
A storage ring is a type of circular particle accelerator in which a continuous or pulsed particle beam may be kept circulating typically for many hours. Storage of a particular particle depends upon the mass, momentum and usually the charge of the particle to be stored. Storage rings most commonly store electrons, positrons, or protons. Storage rings are most often used to store electrons that radiate synchrotron radiation. Over 50 facilities based on electron storage rings exist and are used for a variety of studies in chemistry and biology. Storage rings can also be used to produce polarized high-energy electron beams through the Sokolov-Ternov effect. The best-known application of storage rings is their use in particle accelerators and in particle colliders, where two counter-rotating beams of stored particles are brought into collision at discrete locations. The resulting subatomic interactions are then studied in a surrounding particle detector. Examples of such facilities ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]