HOME

TheInfoList



OR:

An insertion device (ID) is a component in modern
synchrotron light source A synchrotron light source is a source of electromagnetic radiation (EM) usually produced by a storage ring, for scientific and technical purposes. First observed in synchrotrons, synchrotron light is now produced by storage rings and other s ...
s, so called because they are "inserted" into accelerator tracks. They are periodic magnetic structures that stimulate highly brilliant, forward-directed
synchrotron radiation Synchrotron radiation (also known as magnetobremsstrahlung radiation) is the electromagnetic radiation emitted when relativistic charged particles are subject to an acceleration perpendicular to their velocity (). It is produced artificially in ...
emission by forcing a stored charged particle beam to perform wiggles, or undulations, as they pass through the device. This motion is caused by the
Lorentz force In physics (specifically in electromagnetism) the Lorentz force (or electromagnetic force) is the combination of electric and magnetic force on a point charge due to electromagnetic fields. A particle of charge moving with a velocity in an elect ...
, and it is from this oscillatory motion that we get the names for the two classes of device, which are known as wigglers and
undulator An undulator is an insertion device from high-energy physics and usually part of a larger installation, a synchrotron storage ring, or it may be a component of a free electron laser. It consists of a periodic structure of dipole magnets. These c ...
s. As well as creating a brighter light, some insertion devices enable tuning of the light so that different frequencies can be generated for different applications.


History

The theory behind undulators was developed by
Vitaly Ginzburg Vitaly Lazarevich Ginzburg, ForMemRS (russian: Вита́лий Ла́заревич Ги́нзбург, link=no; 4 October 1916 – 8 November 2009) was a Russian physicist who was honored with the Nobel Prize in Physics in 2003, together with ...
in the
USSR The Soviet Union,. officially the Union of Soviet Socialist Republics. (USSR),. was a transcontinental country that spanned much of Eurasia from 1922 to 1991. A flagship communist state, it was nominally a federal union of fifteen nationa ...
. However it was Motz and his team who in 1953 installed the first undulator in a linac at Stanford, using it to generate millimetre wave radiation through to visible light. It was not until the 1970s that undulators were installed in electron storage rings to produce synchrotron radiation. The first institutions to take these devices were the
Lebedev Physical Institute The Lebedev Physical Institute of the Russian Academy of Sciences (LPI RAS or just LPI) (in russian: Физи́ческий институ́т имени П.Н.Ле́бедева Российской академии наук (ФИАН)), situated ...
in
Moscow Moscow ( , US chiefly ; rus, links=no, Москва, r=Moskva, p=mɐskˈva, a=Москва.ogg) is the capital and largest city of Russia. The city stands on the Moskva River in Central Russia, with a population estimated at 13.0 million ...
, and the
Tomsk Polytechnic University National Research Tomsk Polytechnic University (TPU) is a technical university in Russia. TPU was a member of 12 international associations, including the Conference of European Schools for Advanced Engineering Education and Research (CESAER) un ...
. These installations allowed a fuller characterisation of the behaviour of undulators. Undulators only became practical devices for insertion in synchrotron light sources in 1981, when teams at the
Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory (LBNL), commonly referred to as the Berkeley Lab, is a United States Department of Energy National Labs, United States national laboratory that is owned by, and conducts scientific research on behalf of, t ...
(LBNL),
Stanford Synchrotron Radiation Laboratory The Stanford Synchrotron Radiation Lightsource (formerly Stanford Synchrotron Radiation Laboratory), a division of SLAC National Accelerator Laboratory, is operated by Stanford University for the Department of Energy. SSRL is a National User Fac ...
(SSRL), and at
Budker Institute of Nuclear Physics The Budker Institute of Nuclear Physics (BINP) is one of the major centres of advanced study of nuclear physics in Russia. It is located in the Siberian town Akademgorodok, on Academician Lavrentiev Avenue. The institute was founded by Gers ...
(BINP) in Russia developed permanent magnetic arrays, known as
Halbach array A Halbach array is a special arrangement of permanent magnets that augments the magnetic field on one side of the array while cancelling the field to near zero on the other side. This is achieved by having a spatially rotating pattern of magn ...
s, which allowed short repeating periods unachievable with either
electromagnetic coil An electromagnetic coil is an electrical Electrical conductivity, conductor such as a wire in the shape of a wiktionary:coil, coil (spiral or helix). Electromagnetic coils are used in electrical engineering, in applications where electric curre ...
s or superconducting coils. Despite their similar function, wigglers were used in
storage ring A storage ring is a type of circular particle accelerator in which a continuous or pulsed particle beam may be kept circulating typically for many hours. Storage of a particular particle depends upon the mass, momentum and usually the charge of th ...
s for over a decade before they were used to generate synchrotron radiation for
beamline In accelerator physics, a beamline refers to the trajectory of the beam of particles, including the overall construction of the path segment (guide tubes, diagnostic devices) along a specific path of an accelerator facility. This part is either ...
s. Wigglers have a
damping Damping is an influence within or upon an oscillatory system that has the effect of reducing or preventing its oscillation. In physical systems, damping is produced by processes that dissipate the energy stored in the oscillation. Examples in ...
effect on storage rings, which is the function to which they first put at the Cambridge Electron Accelerator in Massachusetts in 1966. The first wiggler used for generation of synchrotron radiation was a 7 pole wiggler installed in the SSRL in 1979. Since these first insertions the number of undulators and wigglers in synchrotron radiation facilities throughout the world have proliferated and they are one of the driving technologies behind the next generation of light sources,
free electron laser A free-electron laser (FEL) is a (fourth generation) light source producing extremely brilliant and short pulses of radiation. An FEL functions and behaves in many ways like a laser, but instead of using stimulated emission from atomic or molecula ...
s.


Operation

Insertion devices are traditionally inserted into straight sections of storage rings (hence their name). As the stored particle beam, usually
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no kn ...
s, pass through the ID the alternating magnetic field experienced by the particles causes their trajectory to undergo a transverse oscillation. The acceleration associated with this movement stimulates the emission of synchrotron radiation. There is very little mechanical difference between wigglers and undulators and the criterion normally used to distinguish between them is the K-Factor. The K-factor is a dimensionless constant defined as: K=\frac where ''q'' is the charge of the particle passing through the ID, ''B'' is the peak magnetic field of the ID, ''\lambda_u'' is the period of the ID, ''\beta=v/c'' relates to the speed, or energy of the particle, ''m'' is the mass of the accelerated particle, and ''c'' is the
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant that is important in many areas of physics. The speed of light is exactly equal to ). According to the special theory of relativity, is the upper limit ...
. Wigglers are deemed to have K>>1 and undulators to have K<1. The K-Factor determines the energy of radiation produced, and in situations where a range of energy is required the K-number can be modified by varying the strength of the magnetic field of the device. In permanent magnet devices this is usually done by increasing the gap between the magnet arrays. In electromagnetic devices the magnetic field is changed by varying the current in the magnet coils. In a wiggler the period and the strength of the magnetic field is not tuned to the frequency of radiation produced by the electrons. Thus every electron in a bunch radiates independently, and the resulting radiation bandwidth is broad. A wiggler can be considered to be series of
bending magnet A dipole magnet is the simplest type of magnet. It has two poles, one north and one south. Its magnetic field lines form simple closed loops which emerge from the north pole, re-enter at the south pole, then pass through the body of the magnet. T ...
s concatenated together, and its radiation intensity scales as the number of magnetic poles in the wiggler. In an
undulator An undulator is an insertion device from high-energy physics and usually part of a larger installation, a synchrotron storage ring, or it may be a component of a free electron laser. It consists of a periodic structure of dipole magnets. These c ...
source the radiation produced by the oscillating electrons interferes constructively with the motion of other electrons, causing the radiation spectrum to have a relatively narrow bandwidth. The intensity of radiation scales as N^2, where N is the number of poles in the magnet array.


References

{{Reflist Synchrotron instrumentation de:Insertion device