HOME
*





Ind-scheme
In algebraic geometry, an ind-scheme is a set-valued functor that can be written (represented) as a direct limit (i.e., inductive limit) of closed embedding of schemes. Examples *\mathbbP^ = \varinjlim \mathbbP^N is an ind-scheme. *Perhaps the most famous example of an ind-scheme is an infinite grassmannian (which is a quotient of the loop group of an algebraic group In mathematics, an algebraic group is an algebraic variety endowed with a group structure which is compatible with its structure as an algebraic variety. Thus the study of algebraic groups belongs both to algebraic geometry and group theory. Ma ... ''G''.) See also * formal scheme References *A. Beilinson, Vladimir Drinfel'd, Quantization of Hitchin’s integrable system and Hecke eigensheaves on Hitchin system, preliminary versio*V.Drinfeld, Infinite-dimensional vector bundles in algebraic geometry, notes of the talk at the `Unity of Mathematics' conferenceExpanded version*http://ncatlab.org/nlab/show/ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Geometry
Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros. The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are: plane algebraic curves, which include lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscates and Cassini ovals. A point of the plane belongs to an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of the points of special interest like the singular points, the inflection points and the points at infinity. More advanced questions involve the topology of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Direct Limit
In mathematics, a direct limit is a way to construct a (typically large) object from many (typically smaller) objects that are put together in a specific way. These objects may be groups, rings, vector spaces or in general objects from any category. The way they are put together is specified by a system of homomorphisms (group homomorphism, ring homomorphism, or in general morphisms in the category) between those smaller objects. The direct limit of the objects A_i, where i ranges over some directed set I, is denoted by \varinjlim A_i . (This is a slight abuse of notation as it suppresses the system of homomorphisms that is crucial for the structure of the limit.) Direct limits are a special case of the concept of colimit in category theory. Direct limits are dual to inverse limits, which are also a special case of limits in category theory. Formal definition We will first give the definition for algebraic structures like groups and modules, and then the general definition ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Infinite Grassmannian
In mathematics, the affine Grassmannian of an algebraic group ''G'' over a field ''k'' is an ind-scheme—a colimit of finite-dimensional schemes—which can be thought of as a flag variety for the loop group ''G''(''k''((''t''))) and which describes the representation theory of the Langlands dual group ''L''''G'' through what is known as the geometric Satake correspondence. Definition of Gr via functor of points Let ''k'' be a field, and denote by k\text and \mathrm the category of commutative ''k''-algebras and the category of sets respectively. Through the Yoneda lemma, a scheme ''X'' over a field ''k'' is determined by its functor of points, which is the functor X:k\text \to \mathrm which takes ''A'' to the set ''X''(''A'') of ''A''-points of ''X''. We then say that this functor is representable by the scheme ''X''. The affine Grassmannian is a functor from ''k''-algebras to sets which is not itself representable, but which has a filtration by representable functors. As s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Functor
In mathematics, specifically category theory, a functor is a Map (mathematics), mapping between Category (mathematics), categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) are associated to topological spaces, and maps between these algebraic objects are associated to continuous function, continuous maps between spaces. Nowadays, functors are used throughout modern mathematics to relate various categories. Thus, functors are important in all areas within mathematics to which category theory is applied. The words ''category'' and ''functor'' were borrowed by mathematicians from the philosophers Aristotle and Rudolf Carnap, respectively. The latter used ''functor'' in a Linguistics, linguistic context; see function word. Definition Let ''C'' and ''D'' be category (mathematics), categories. A functor ''F'' from ''C'' to ''D'' is a mapping that * associates each object X in ''C'' to an object F(X) in ''D' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Closed Immersion
In algebraic geometry, a closed immersion of schemes is a morphism of schemes f: Z \to X that identifies ''Z'' as a closed subset of ''X'' such that locally, regular functions on ''Z'' can be extended to ''X''. The latter condition can be formalized by saying that f^\#:\mathcal_X\rightarrow f_\ast\mathcal_Z is surjective. An example is the inclusion map \operatorname(R/I) \to \operatorname(R) induced by the canonical map R \to R/I. Other characterizations The following are equivalent: #f: Z \to X is a closed immersion. #For every open affine U = \operatorname(R) \subset X, there exists an ideal I \subset R such that f^(U) = \operatorname(R/I) as schemes over ''U''. #There exists an open affine covering X = \bigcup U_j, U_j = \operatorname R_j and for each ''j'' there exists an ideal I_j \subset R_j such that f^(U_j) = \operatorname (R_j / I_j) as schemes over U_j. #There is a quasi-coherent sheaf of ideals \mathcal on ''X'' such that f_\ast\mathcal_Z\cong \mathcal_X/\mathcal and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Scheme (mathematics)
In mathematics, a scheme is a mathematical structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities (the equations ''x'' = 0 and ''x''2 = 0 define the same algebraic variety but different schemes) and allowing "varieties" defined over any commutative ring (for example, Fermat curves are defined over the integers). Scheme theory was introduced by Alexander Grothendieck in 1960 in his treatise "Éléments de géométrie algébrique"; one of its aims was developing the formalism needed to solve deep problems of algebraic geometry, such as the Weil conjectures (the last of which was proved by Pierre Deligne). Strongly based on commutative algebra, scheme theory allows a systematic use of methods of topology and homological algebra. Scheme theory also unifies algebraic geometry with much of number theory, which eventually led to Wiles's proof of Fermat's Last Theorem. Formally, a scheme is a topological space together with ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Loop Group
In mathematics, a loop group is a Group (mathematics), group of Loop (topology), loops in a topological group ''G'' with multiplication defined pointwise. Definition In its most general form a loop group is a group of continuous mappings from a manifold to a topological group . More specifically, let , the circle in the complex plane, and let denote the Topological space, space of Continuous function (topology), continuous maps , i.e. :LG = \, equipped with the compact-open topology. An element of is called a ''loop'' in . Pointwise multiplication of such loops gives the structure of a topological group. Parametrize with , :\gamma:\theta \in S^1 \mapsto \gamma(\theta) \in G, and define multiplication in by :(\gamma_1 \gamma_2)(\theta) \equiv \gamma_1(\theta)\gamma_2(\theta). Associativity follows from associativity in . The inverse is given by :\gamma^:\gamma^(\theta) \equiv \gamma(\theta)^, and the identity by :e:\theta \mapsto e \in G. The space is called the free ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraic Group
In mathematics, an algebraic group is an algebraic variety endowed with a group structure which is compatible with its structure as an algebraic variety. Thus the study of algebraic groups belongs both to algebraic geometry and group theory. Many groups of geometric transformations are algebraic groups; for example, orthogonal groups, general linear groups, projective groups, Euclidean groups, etc. Many matrix groups are also algebraic. Other algebraic groups occur naturally in algebraic geometry, such as elliptic curves and Jacobian varieties. An important class of algebraic groups is given by the affine algebraic groups, those whose underlying algebraic variety is an affine variety; they are exactly the algebraic subgroups of the general linear group, and are therefore also called ''linear algebraic groups''. Another class is formed by the abelian varieties, which are the algebraic groups whose underlying variety is a projective variety. Chevalley's structure theorem states ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Formal Scheme
In mathematics, specifically in algebraic geometry, a formal scheme is a type of space which includes data about its surroundings. Unlike an ordinary scheme, a formal scheme includes infinitesimal data that, in effect, points in a direction off of the scheme. For this reason, formal schemes frequently appear in topics such as deformation theory. But the concept is also used to prove a theorem such as the theorem on formal functions, which is used to deduce theorems of interest for usual schemes. A locally Noetherian scheme is a locally Noetherian formal scheme in the canonical way: the formal completion along itself. In other words, the category of locally Noetherian formal schemes contains all locally Noetherian schemes. Formal schemes were motivated by and generalize Zariski's theory of formal holomorphic functions. Algebraic geometry based on formal schemes is called formal algebraic geometry. Definition Formal schemes are usually defined only in the Noetherian case. While ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]