Hugh Muirhead
   HOME
*





Hugh Muirhead
Hugh Muirhead (1925 – 19 January 2007) was a British nuclear physicist and the last surviving author of the scientific paper announcing the discovery of the pion, a particle predicted by Hideki Yukawa. Muirhead did his PhD studies at the University of Bristol, where he, César Lattes and Giuseppe Occhialini, were part of Cecil Powell's group trying to confirm the existence of pions. Evidence was eventually found on 7 March 1947 by two of the group's technical team, Marietta Kurz and Irene Roberts. A paper was submitted to the journal '' Nature'' and published the same year. In 1950, Powell was awarded the Nobel Prize for the discovery. After gaining his PhD, Muirhead moved to the University of Glasgow and then the University of Liverpool in 1957, where he spent the rest of his career. Under his direction at Liverpool, it was experimentally confirmed that parity was violated in muon capture. He became a world authority on antiproton physics. As well as dozens of scient ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Nuclear Physicist
Nuclear physics is the field of physics that studies atomic nuclei and their constituents and interactions, in addition to the study of other forms of nuclear matter. Nuclear physics should not be confused with atomic physics, which studies the atom as a whole, including its electrons. Discoveries in nuclear physics have led to applications in many fields. This includes nuclear power, nuclear weapons, nuclear medicine and magnetic resonance imaging, industrial and agricultural isotopes, ion implantation in materials engineering, and radiocarbon dating in geology and archaeology. Such applications are studied in the field of nuclear engineering. Particle physics evolved out of nuclear physics and the two fields are typically taught in close association. Nuclear astrophysics, the application of nuclear physics to astrophysics, is crucial in explaining the inner workings of stars and the origin of the chemical elements. History The history of nuclear physics as a discipline ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Muon Capture
Muon capture is the capture of a negative muon by a proton, usually resulting in production of a neutron and a neutrino, and sometimes a gamma photon. Muon capture by heavy nuclei often leads to emission of particles; most often neutrons, but charged particles can be emitted as well. Ordinary muon capture (OMC) involves capture of a negative muon from the atomic orbital without emission of a gamma photon: : +  → μ +  Radiative muon capture (RMC) is a radiative version of OMC, where a gamma photon is emitted: : +  → μ +  +  Theoretical motivation for the study of muon capture on the proton is its connection to the proton's induced pseudoscalar form factor gp. Practical application - Nuclear waste disposal Muon capture is being investigated for practical application in radioactive waste disposal, for example in the artificial transmutation of large quantities of long-lived radioactive waste that have ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


2007 Deaths
This is a list of deaths of notable people, organised by year. New deaths articles are added to their respective month (e.g., Deaths in ) and then linked here. 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991 1990 1989 1988 1987 See also * Lists of deaths by day The following pages, corresponding to the Gregorian calendar, list the historical events, births, deaths, and holidays and observances of the specified day of the year: Footnotes See also * Leap year * List of calendars * List of non-standard ... * Deaths by year {{DEFAULTSORT:deaths by year ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


1925 Births
Nineteen or 19 may refer to: * 19 (number), the natural number following 18 and preceding 20 * one of the years 19 BC, AD 19, 1919, 2019 Films * ''19'' (film), a 2001 Japanese film * ''Nineteen'' (film), a 1987 science fiction film Music * 19 (band), a Japanese pop music duo Albums * ''19'' (Adele album), 2008 * ''19'', a 2003 album by Alsou * ''19'', a 2006 album by Evan Yo * ''19'', a 2018 album by MHD * ''19'', one half of the double album ''63/19'' by Kool A.D. * ''Number Nineteen'', a 1971 album by American jazz pianist Mal Waldron * ''XIX'' (EP), a 2019 EP by 1the9 Songs * "19" (song), a 1985 song by British musician Paul Hardcastle. * "Nineteen", a song by Bad4Good from the 1992 album '' Refugee'' * "Nineteen", a song by Karma to Burn from the 2001 album ''Almost Heathen''. * "Nineteen" (song), a 2007 song by American singer Billy Ray Cyrus. * "Nineteen", a song by Tegan and Sara from the 2007 album '' The Con''. * "XIX" (song), a 2014 song by Slip ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Simon Van Der Meer
Simon van der Meer (24 November 19254 March 2011) was a Dutch Accelerator physics, particle accelerator physicist who shared the Nobel Prize in Physics in 1984 with Carlo Rubbia for contributions to the CERN project which led to the discovery of the W and Z bosons, W and Z particles, the two fundamental communicators of the weak interaction. Biography One of four children, Simon van der Meer was born and grew up in The Hague, the Netherlands, in a family of teachers. He was educated at the city's Gymnasium (school), gymnasium, graduating in 1943 during the German occupation of the Netherlands. He studied Technical Physics at the Delft University of Technology, and received an engineer's degree in 1952. After working for Philips Natuurkundig Laboratorium, Philips Research in Eindhoven on high-voltage equipment for electron microscopy for a few years, he joined CERN in 1956 where he stayed until his retirement in 1990. Van der Meer was a relative of Nobel Prize winner Tjalling ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Alan Astbury
Alan Astbury (1934–2014) was a Canadian physicist, emeritus professor at the University of Victoria, and director of the Tri-Universities Meson Facility (TRIUMF) laboratory. Early life and education He was born in Crewe, England, to Jane and Harold Astbury. His mother worked in a bakery and his father was an engineer for the Co-op Dairy. He went to Nantwich and Acton Grammar School. Although he was a good cricketer and footballer - he played for Crewe Schoolboys along with Chelsea and England player Frank Blunstone - his parents discouraged a career in football. Academic career In 1953, he joined the University of Liverpool, gaining a first-class honours degree in 1956 followed by a PhD in 1959 under Alec Merrison and Hugh Muirhead. He won a Leverhulme Research Fellowship to work on Liverpool's 380 MeV, 1.83m (72 inch) synchrocyclotron, the world's second-largest at the time. The team's work confirmed parity violation in muon capture. He joined Kenneth Crowe's group at B ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Carlo Rubbia
Carlo Rubbia (born 31 March 1934) is an Italian particle physicist and inventor who shared the Nobel Prize in Physics in 1984 with Simon van der Meer for work leading to the discovery of the W and Z particles at CERN. Early life and education Rubbia was born in 1934 in Gorizia, an Italian town on the border with Slovenia. His family moved to Venice then Udine because of wartime disruption. His father was an electrical engineer and encouraged him to study the same, though he stated his wish to study physics. In the local countryside, he collected and experimented with abandoned military communications equipment. After taking an entrance exam for the Scuola Normale Superiore di Pisa to study physics, he failed to get into the required top ten (coming eleventh), so began an engineering course in Milan in 1953. Soon after, a Pisa student dropped out, presenting Rubbia with his opportunity. He gained a degree and doctorate in a relatively short time with a thesis on cosmic ray experi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

CERN
The European Organization for Nuclear Research, known as CERN (; ; ), is an intergovernmental organization that operates the largest particle physics laboratory in the world. Established in 1954, it is based in a northwestern suburb of Geneva, on the France–Switzerland border. It comprises 23 member states, and Israel (admitted in 2013) is currently the only non-European country holding full membership. CERN is an official United Nations General Assembly observer. The acronym CERN is also used to refer to the laboratory; in 2019, it had 2,660 scientific, technical, and administrative staff members, and hosted about 12,400 users from institutions in more than 70 countries. In 2016, CERN generated 49 petabytes of data. CERN's main function is to provide the particle accelerators and other infrastructure needed for high-energy physics research — consequently, numerous experiments have been constructed at CERN through international collaborations. CERN is the site of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

UA1 Experiment
The UA1 experiment (an abbreviation of Underground Area 1) was a high-energy physics experiment that ran at CERN's Proton-Antiproton Collider (SpS), a modification of the one-beam Super Proton Synchrotron (SPS). The data was recorded between 1981 and 1990. The joint discovery of the W and Z bosons by this experiment and the UA2 experiment in 1983 led to the Nobel Prize for physics being awarded to Carlo Rubbia and Simon van der Meer in 1984. Peter Kalmus (physicist), Peter Kalmus and John Dowell, from the UK groups working on the project, were jointly awarded the 1988 Rutherford Medal and Prize from the Institute of Physics for their outstanding roles in the discovery of the W and Z particles. It was named as the first experiment in a CERN "Underground Area" (UA), i.e. located underground, outside of the two main CERN sites, at an interaction point on the SPS accelerator, which had been modified to operate as a collider. The UA1 central detector was crucial to understanding t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rutherford Appleton Laboratory
The Rutherford Appleton Laboratory (RAL) is one of the national scientific research laboratories in the UK operated by the Science and Technology Facilities Council (STFC). It began as the Rutherford High Energy Laboratory, merged with the Atlas Computer Laboratory in 1975 to create the Rutherford Lab; then in 1979 with the Appleton Laboratory to form the current laboratory. It is located on the Harwell Science and Innovation Campus at Chilton near Didcot in Oxfordshire, United Kingdom. It has a staff of approximately 1,200 people who support the work of over 10,000 scientists and engineers, chiefly from the university research community. The laboratory's programme is designed to deliver trained manpower and economic growth for the UK as the result of achievements in science. History RAL is named after the physicists Ernest Rutherford and Edward Appleton. The National Institute for Research in Nuclear Science (NIRNS) was formed in 1957 to operate the Rutherford High Energy La ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Antiproton
The antiproton, , (pronounced ''p-bar'') is the antiparticle of the proton. Antiprotons are stable, but they are typically short-lived, since any collision with a proton will cause both particles to be annihilated in a burst of energy. The existence of the antiproton with electric charge of , opposite to the electric charge of of the proton, was predicted by Paul Dirac in his 1933 Nobel Prize lecture. Dirac received the Nobel Prize for his 1928 publication of his Dirac equation that predicted the existence of positive and negative solutions to Einstein's energy equation (E = mc^2) and the existence of the positron, the antimatter analog of the electron, with opposite charge and spin. The antiproton was first experimentally confirmed in 1955 at the Bevatron particle accelerator by University of California, Berkeley physicists Emilio Segrè and Owen Chamberlain, for which they were awarded the 1959 Nobel Prize in Physics. In terms of valence quarks, an antiproton consists of two ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Parity (physics)
In physics, a parity transformation (also called parity inversion) is the flip in the sign of ''one'' spatial coordinate. In three dimensions, it can also refer to the simultaneous flip in the sign of all three spatial coordinates (a point reflection): :\mathbf: \beginx\\y\\z\end \mapsto \begin-x\\-y\\-z\end. It can also be thought of as a test for chirality of a physical phenomenon, in that a parity inversion transforms a phenomenon into its mirror image. All fundamental interactions of elementary particles, with the exception of the weak interaction, are symmetric under parity. The weak interaction is chiral and thus provides a means for probing chirality in physics. In interactions that are symmetric under parity, such as electromagnetism in atomic and molecular physics, parity serves as a powerful controlling principle underlying quantum transitions. A matrix representation of P (in any number of dimensions) has determinant equal to −1, and hence is distinct from a rotat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]