HOME
*



picture info

Homological Algebra
Homological algebra is the branch of mathematics that studies homology in a general algebraic setting. It is a relatively young discipline, whose origins can be traced to investigations in combinatorial topology (a precursor to algebraic topology) and abstract algebra (theory of modules and syzygies) at the end of the 19th century, chiefly by Henri Poincaré and David Hilbert. Homological algebra is the study of homological functors and the intricate algebraic structures that they entail; its development was closely intertwined with the emergence of category theory. A central concept is that of chain complexes, which can be studied through both their homology and cohomology. Homological algebra affords the means to extract information contained in these complexes and present it in the form of homological invariants of rings, modules, topological spaces, and other 'tangible' mathematical objects. A powerful tool for doing this is provided by spectral sequences. It has pla ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Snake Lemma Origin
Snakes are elongated, limbless, carnivorous reptiles of the suborder Serpentes . Like all other squamates, snakes are ectothermic, amniote vertebrates covered in overlapping scales. Many species of snakes have skulls with several more joints than their lizard ancestors, enabling them to swallow prey much larger than their heads (cranial kinesis). To accommodate their narrow bodies, snakes' paired organs (such as kidneys) appear one in front of the other instead of side by side, and most have only one functional lung. Some species retain a pelvic girdle with a pair of vestigial claws on either side of the cloaca. Lizards have evolved elongate bodies without limbs or with greatly reduced limbs about twenty-five times independently via convergent evolution, leading to many lineages of legless lizards. These resemble snakes, but several common groups of legless lizards have eyelids and external ears, which snakes lack, although this rule is not universal (see Amphisbaenia, Dibamid ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Spectral Sequence
In homological algebra and algebraic topology, a spectral sequence is a means of computing homology groups by taking successive approximations. Spectral sequences are a generalization of exact sequences, and since their introduction by , they have become important computational tools, particularly in algebraic topology, algebraic geometry and homological algebra. Discovery and motivation Motivated by problems in algebraic topology, Jean Leray introduced the notion of a sheaf and found himself faced with the problem of computing sheaf cohomology. To compute sheaf cohomology, Leray introduced a computational technique now known as the Leray spectral sequence. This gave a relation between cohomology groups of a sheaf and cohomology groups of the pushforward of the sheaf. The relation involved an infinite process. Leray found that the cohomology groups of the pushforward formed a natural chain complex, so that he could take the cohomology of the cohomology. This was still not ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Tor Functor
In mathematics, the Tor functors are the derived functors of the tensor product of modules over a ring. Along with the Ext functor, Tor is one of the central concepts of homological algebra, in which ideas from algebraic topology are used to construct invariants of algebraic structures. The homology of groups, Lie algebras, and associative algebras can all be defined in terms of Tor. The name comes from a relation between the first Tor group Tor1 and the torsion subgroup of an abelian group. In the special case of abelian groups, Tor was introduced by Eduard Čech (1935) and named by Samuel Eilenberg around 1950. It was first applied to the Künneth theorem and universal coefficient theorem in topology. For modules over any ring, Tor was defined by Henri Cartan and Eilenberg in their 1956 book ''Homological Algebra''. Definition Let ''R'' be a ring. Write ''R''-Mod for the category of left ''R''-modules and Mod-''R'' for the category of right ''R''-modules. (If ''R'' i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ext Functor
In mathematics, the Ext functors are the derived functors of the Hom functor. Along with the Tor functor, Ext is one of the core concepts of homological algebra, in which ideas from algebraic topology are used to define invariants of algebraic structures. The cohomology of groups, Lie algebras, and associative algebras can all be defined in terms of Ext. The name comes from the fact that the first Ext group Ext1 classifies extensions of one module by another. In the special case of abelian groups, Ext was introduced by Reinhold Baer (1934). It was named by Samuel Eilenberg and Saunders MacLane (1942), and applied to topology (the universal coefficient theorem for cohomology). For modules over any ring, Ext was defined by Henri Cartan and Eilenberg in their 1956 book ''Homological Algebra''. Definition Let ''R'' be a ring and let ''R''-Mod be the category of modules over ''R''. (One can take this to mean either left ''R''-modules or right ''R''-modules.) For a fixed ''R''-module ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Alain Connes
Alain Connes (; born 1 April 1947) is a French mathematician, and a theoretical physicist, known for his contributions to the study of operator algebras and noncommutative geometry. He is a professor at the , , Ohio State University and Vanderbilt University. He was awarded the Fields Medal in 1982. Career Source: Academic career timeline: (1966–1970) – Bachelor's degree from the École Normale Supérieure (now part of Paris Sciences et Lettres University). (1973) – doctorate from Pierre and Marie Curie University, Paris, France (1970–1974) – appointment at the French National Centre for Scientific Research, Paris (1975) – Queen's University at Kingston, Ontario, Canada (1976–1980) – the University of Paris VI (1979 – present) – the Institute of Advanced Scientific Studies, Bures-sur-Yvette, France (1981–1984) – the French National Centre for Scientific Research, Paris (1984–2017) – the , Paris (2003–2011) – Vanderbilt University, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Noncommutative Geometry
Noncommutative geometry (NCG) is a branch of mathematics concerned with a geometric approach to noncommutative algebras, and with the construction of ''spaces'' that are locally presented by noncommutative algebras of functions (possibly in some generalized sense). A noncommutative algebra is an associative algebra in which the multiplication is not commutative, that is, for which xy does not always equal yx; or more generally an algebraic structure in which one of the principal binary operations is not commutative; one also allows additional structures, e.g. topology or norm, to be possibly carried by the noncommutative algebra of functions. An approach giving deep insight about noncommutative spaces is through operator algebras (i.e. algebras of bounded linear operators on a Hilbert space). Perhaps one of the typical examples of a noncommutative space is the " noncommutative tori", which played a key role in the early development of this field in 1980s and lead to noncommutativ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




K-theory
In mathematics, K-theory is, roughly speaking, the study of a ring generated by vector bundles over a topological space or scheme. In algebraic topology, it is a cohomology theory known as topological K-theory. In algebra and algebraic geometry, it is referred to as algebraic K-theory. It is also a fundamental tool in the field of operator algebras. It can be seen as the study of certain kinds of invariants of large matrices. K-theory involves the construction of families of ''K''-functors that map from topological spaces or schemes to associated rings; these rings reflect some aspects of the structure of the original spaces or schemes. As with functors to groups in algebraic topology, the reason for this functorial mapping is that it is easier to compute some topological properties from the mapped rings than from the original spaces or schemes. Examples of results gleaned from the K-theory approach include the Grothendieck–Riemann–Roch theorem, Bott periodicity, the Atiya ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Partial Differential Equation
In mathematics, a partial differential equation (PDE) is an equation which imposes relations between the various partial derivatives of a multivariable function. The function is often thought of as an "unknown" to be solved for, similarly to how is thought of as an unknown number to be solved for in an algebraic equation like . However, it is usually impossible to write down explicit formulas for solutions of partial differential equations. There is, correspondingly, a vast amount of modern mathematical and scientific research on methods to numerically approximate solutions of certain partial differential equations using computers. Partial differential equations also occupy a large sector of pure mathematical research, in which the usual questions are, broadly speaking, on the identification of general qualitative features of solutions of various partial differential equations, such as existence, uniqueness, regularity, and stability. Among the many open questions are the ex ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Complex Analysis
Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates Function (mathematics), functions of complex numbers. It is helpful in many branches of mathematics, including algebraic geometry, number theory, analytic combinatorics, applied mathematics; as well as in physics, including the branches of hydrodynamics, thermodynamics, and particularly quantum mechanics. By extension, use of complex analysis also has applications in engineering fields such as nuclear engineering, nuclear, aerospace engineering, aerospace, mechanical engineering, mechanical and electrical engineering. As a differentiable function of a complex variable is equal to its Taylor series (that is, it is Analyticity of holomorphic functions, analytic), complex analysis is particularly concerned with analytic functions of a complex variable (that is, holomorphic functions). History Complex analysis is one of the classical ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Operator Algebra
In functional analysis, a branch of mathematics, an operator algebra is an algebra of continuous linear operators on a topological vector space, with the multiplication given by the composition of mappings. The results obtained in the study of operator algebras are phrased in algebraic terms, while the techniques used are highly analytic.''Theory of Operator Algebras I'' By Masamichi Takesaki, Springer 2012, p vi Although the study of operator algebras is usually classified as a branch of functional analysis, it has direct applications to representation theory, differential geometry, quantum statistical mechanics, quantum information, and quantum field theory. Overview Operator algebras can be used to study arbitrary sets of operators with little algebraic relation ''simultaneously''. From this point of view, operator algebras can be regarded as a generalization of spectral theory of a single operator. In general operator algebras are non-commutative rings. An operator alg ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematical Physics
Mathematical physics refers to the development of mathematical methods for application to problems in physics. The '' Journal of Mathematical Physics'' defines the field as "the application of mathematics to problems in physics and the development of mathematical methods suitable for such applications and for the formulation of physical theories". An alternative definition would also include those mathematics that are inspired by physics (also known as physical mathematics). Scope There are several distinct branches of mathematical physics, and these roughly correspond to particular historical periods. Classical mechanics The rigorous, abstract and advanced reformulation of Newtonian mechanics adopting the Lagrangian mechanics and the Hamiltonian mechanics even in the presence of constraints. Both formulations are embodied in analytical mechanics and lead to understanding the deep interplay of the notions of symmetry and conserved quantities during the dynamical evol ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Representation Theory
Representation theory is a branch of mathematics that studies abstract algebraic structures by ''representing'' their elements as linear transformations of vector spaces, and studies modules over these abstract algebraic structures. In essence, a representation makes an abstract algebraic object more concrete by describing its elements by matrices and their algebraic operations (for example, matrix addition, matrix multiplication). The theory of matrices and linear operators is well-understood, so representations of more abstract objects in terms of familiar linear algebra objects helps glean properties and sometimes simplify calculations on more abstract theories. The algebraic objects amenable to such a description include groups, associative algebras and Lie algebras. The most prominent of these (and historically the first) is the representation theory of groups, in which elements of a group are represented by invertible matrices in such a way that the group operation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]