Holdover In Synchronization Applications
   HOME
*



picture info

Holdover In Synchronization Applications
Two independent clocks, once synchronized, will walk away from one another without limit. To have them display the same time it would be necessary to re-synchronize them at regular intervals. The period between synchronizations is referred to as holdover and performance under holdover relies on the quality of the reference oscillator, the PLL design, and the correction mechanisms employed. Importance The quote above suggests that one can think of holdover in synchronization applications as analogous to running on backup power. Modern wireless communication systems require at least knowledge of frequency and often knowledge of phase as well in order to work correctly. Base stations need to know what time it is, and they usually get this knowledge from the outside world somehow (from a GPS Time and Frequency receiver, or from a synchronization source somewhere in the network they are connected to). But if the connection to the reference is lost then the base station will be on its ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




IEEE
The Institute of Electrical and Electronics Engineers (IEEE) is a 501(c)(3) professional association for electronic engineering and electrical engineering (and associated disciplines) with its corporate office in New York City and its operations center in Piscataway, New Jersey. The mission of the IEEE is ''advancing technology for the benefit of humanity''. The IEEE was formed from the amalgamation of the American Institute of Electrical Engineers and the Institute of Radio Engineers in 1963. Due to its expansion of scope into so many related fields, it is simply referred to by the letters I-E-E-E (pronounced I-triple-E), except on legal business documents. , it is the world's largest association of technical professionals with more than 423,000 members in over 160 countries around the world. Its objectives are the educational and technical advancement of electrical and electronic engineering, telecommunications, computer engineering and similar disciplines. History Ori ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rubidium Standard
A rubidium standard or rubidium atomic clock is a frequency standard in which a specified hyperfine transition of electrons in rubidium-87 atoms is used to control the output frequency. Synopsis The Rb standard is the most inexpensive, compact, and widely produced atomic clock, used to control the frequency of television stations, cell phone base stations, in test equipment, and global navigation satellite systems like GPS. Commercial rubidium clocks are less accurate than caesium atomic clocks, which serve as primary frequency standards, so the rubidium clock is a secondary frequency standard. All commercial rubidium frequency standards operate by disciplining a crystal oscillator to the rubidium hyperfine transition of 6.8 GHz (). The intensity of light from a rubidium discharge lamp that reaches a photodetector through a resonance cell will drop by about 0.1% when the rubidium vapor in the resonance cell is exposed to microwave power near the transition frequency. The c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

GPS Time
The Global Positioning System (GPS), originally Navstar GPS, is a satellite-based radionavigation system owned by the United States government and operated by the United States Space Force. It is one of the global navigation satellite systems (GNSS) that provides geolocation and time information to a GPS receiver anywhere on or near the Earth where there is an unobstructed line of sight to four or more GPS satellites. It does not require the user to transmit any data, and operates independently of any telephonic or Internet reception, though these technologies can enhance the usefulness of the GPS positioning information. It provides critical positioning capabilities to military, civil, and commercial users around the world. Although the United States government created, controls and maintains the GPS system, it is freely accessible to anyone with a GPS receiver. The GPS project was started by the U.S. Department of Defense in 1973. The first prototype spacecraft was laun ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Time Transfer
Time and frequency transfer is a scheme where multiple sites share a precise reference time or frequency. The technique is commonly used for creating and distributing standard time scales such as International Atomic Time (TAI). Time transfer solves problems such as astronomical observatories correlating observed flashes or other phenomena with each other, as well as cell phone towers coordinating handoffs as a phone moves from one cell to another. Multiple techniques have been developed, often transferring reference clock synchronization from one point to another, often over long distances. Accuracy approaching one nanosecond worldwide is economically practical for many applications. Radio-based navigation systems are frequently used as time transfer systems. In some cases, multiple measurements are made over a period of time, and exact time synchronization is determined retrospectively. In particular, time synchronization has been accomplished by using pairs of radio tel ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Synchronous Optical Networking
Synchronous optical networking (SONET) and synchronous digital hierarchy (SDH) are standardized protocols that transfer multiple digital bit streams synchronously over optical fiber using lasers or highly coherent light from light-emitting diode A light-emitting diode (LED) is a semiconductor device that emits light when current flows through it. Electrons in the semiconductor recombine with electron holes, releasing energy in the form of photons. The color of the light ( ...s (LEDs). At low Bit rate, transmission rates data can also be transferred via an electrical interface. The method was developed to replace the plesiochronous digital hierarchy (PDH) system for transporting large amounts of telephone calls and data traffic over the same fiber without the problems of synchronization. SONET and SDH, which are essentially the same, were originally designed to transport circuit mode communications (e.g., Digital Signal 1, DS1, Digital Signal 3, DS3) from a va ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Synchronization
Synchronization is the coordination of events to operate a system in unison. For example, the conductor of an orchestra keeps the orchestra synchronized or ''in time''. Systems that operate with all parts in synchrony are said to be synchronous or ''in sync''—and those that are not are '' asynchronous''. Today, time synchronization can occur between systems around the world through satellite navigation signals and other time and frequency transfer techniques. Navigation and railways Time-keeping and synchronization of clocks is a critical problem in long-distance ocean navigation. Before radio navigation and satellite-based navigation, navigators required accurate time in conjunction with astronomical observations to determine how far east or west their vessel traveled. The invention of an accurate marine chronometer revolutionized marine navigation. By the end of the 19th century, important ports provided time signals in the form of a signal gun, flag, or dropping ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Random Walk
In mathematics, a random walk is a random process that describes a path that consists of a succession of random steps on some mathematical space. An elementary example of a random walk is the random walk on the integer number line \mathbb Z which starts at 0, and at each step moves +1 or −1 with equal probability. Other examples include the path traced by a molecule as it travels in a liquid or a gas (see Brownian motion), the search path of a foraging animal, or the price of a fluctuating stock and the financial status of a gambler. Random walks have applications to engineering and many scientific fields including ecology, psychology, computer science, physics, chemistry, biology, economics, and sociology. The term ''random walk'' was first introduced by Karl Pearson in 1905. Lattice random walk A popular random walk model is that of a random walk on a regular lattice, where at each step the location jumps to another site according to some probability distribution. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Time Deviation
Time deviation (TDEV), also known as \sigma_x(\tau), is the time stability of phase ''x'' versus observation interval ''τ'' of the measured clock source. The time deviation thus forms a standard deviation type of measurement to indicate the time instability of the signal source. This is a scaled variant of frequency stability of Allan deviation. It is commonly defined from the modified Allan deviation, but other estimators may be used. ''Time variance'' (''TVAR'') also known as \sigma_x^2(\tau) is the time stability of phase versus observation interval tau. It is a scaled variant of modified Allan variance. TDEV is a metric often used to determine an aspect of the quality of timing signals in telecommunication applications and is a statistical analysis of the phase stability of a signal over a given period. Measurements of a reference timing signal will refer to its TDEV and maximum time interval error (MTIE) values, comparing them to specified masks or goals. Definition The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Allan Deviation
The Allan variance (AVAR), also known as two-sample variance, is a measure of frequency stability in clocks, oscillators and amplifiers. It is named after David W. Allan and expressed mathematically as \sigma_y^2(\tau). The Allan deviation (ADEV), also known as sigma-tau, is the square root of the Allan variance, \sigma_y(\tau). The ''M-sample variance'' is a measure of frequency stability using ''M'' samples, time ''T'' between measurements and observation time \tau. ''M''-sample variance is expressed as :\sigma_y^2(M, T, \tau). The Allan variance is intended to estimate stability due to noise processes and not that of systematic errors or imperfections such as frequency drift or temperature effects. The Allan variance and Allan deviation describe frequency stability. See also the section Interpretation of value below. There are also different adaptations or alterations of Allan variance, notably the modified Allan variance MAVAR or MVAR, the total variance, and the Hada ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Kalman Filter
For statistics and control theory, Kalman filtering, also known as linear quadratic estimation (LQE), is an algorithm that uses a series of measurements observed over time, including statistical noise and other inaccuracies, and produces estimates of unknown variables that tend to be more accurate than those based on a single measurement alone, by estimating a joint probability distribution over the variables for each timeframe. The filter is named after Rudolf E. Kálmán, who was one of the primary developers of its theory. This digital filter is sometimes termed the ''Stratonovich–Kalman–Bucy filter'' because it is a special case of a more general, nonlinear filter developed somewhat earlier by the Soviet mathematician Ruslan Stratonovich. In fact, some of the special case linear filter's equations appeared in papers by Stratonovich that were published before summer 1960, when Kalman met with Stratonovich during a conference in Moscow. Kalman filtering has numerous te ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Caesium
Caesium ( IUPAC spelling) (or cesium in American English) is a chemical element with the symbol Cs and atomic number 55. It is a soft, silvery-golden alkali metal with a melting point of , which makes it one of only five elemental metals that are liquid at or near room temperature. Caesium has physical and chemical properties similar to those of rubidium and potassium. It is pyrophoric and reacts with water even at . It is the least electronegative element, with a value of 0.79 on the Pauling scale. It has only one stable isotope, caesium-133. Caesium is mined mostly from pollucite. The element has 40 known isotopes, making it, along with barium and mercury, one of the elements with the most isotopes. Caesium-137, a fission product, is extracted from waste produced by nuclear reactors. The German chemist Robert Bunsen and physicist Gustav Kirchhoff discovered caesium in 1860 by the newly developed method of flame spectroscopy. The first small-scale applications fo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Crystal Oven
A crystal oven is a temperature-controlled chamber used to maintain the quartz crystal in electronic crystal oscillators at a constant temperature, in order to prevent changes in the frequency due to variations in ambient temperature. An oscillator of this type is known as an ''oven-controlled crystal oscillator'' (OCXO, where "XO" is an old abbreviation for "crystal oscillator".) This type of oscillator achieves the highest frequency stability possible with a crystal. They are typically used to control the frequency of radio transmitters, cellular base stations, military communications equipment, and for precision frequency measurement. Description Quartz crystals are widely used in electronic oscillators to precisely control the frequency produced. The frequency at which a quartz crystal resonator vibrates depends on its physical dimensions. A change in temperature causes the quartz to expand or contract due to thermal expansion, changing the frequency of the signal produce ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]