Higher-dimensional Algebra
   HOME
*





Higher-dimensional Algebra
In mathematics, especially ( higher) category theory, higher-dimensional algebra is the study of categorified structures. It has applications in nonabelian algebraic topology, and generalizes abstract algebra. Higher-dimensional categories A first step towards defining higher dimensional algebras is the concept of 2-category of higher category theory, followed by the more 'geometric' concept of double category. A higher level concept is thus defined as a category of categories, or super-category, which generalises to higher dimensions the notion of category – regarded as any structure which is an interpretation of Lawvere's axioms of the '' elementary theory of abstract categories'' (ETAC). Ll. , Thus, a supercategory and also a super-category, can be regarded as natural extensions of the concepts of meta-category, multicategory, and multi-graph, ''k''-partite graph, or colored graph (see a color figure, and also its definition in graph theory). Supercategories we ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Color Figure
Color (American English) or colour (British English) is the visual perceptual property deriving from the spectrum of light interacting with the photoreceptor cells of the eyes. Color categories and physical specifications of color are associated with objects or materials based on their physical properties such as light absorption, reflection, or emission spectra. By defining a color space, colors can be identified numerically by their coordinates. Because perception of color stems from the varying spectral sensitivity of different types of cone cells in the retina to different parts of the spectrum, colors may be defined and quantified by the degree to which they stimulate these cells. These physical or physiological quantifications of color, however, do not fully explain the psychophysical perception of color appearance. Color science includes the perception of color by the eye and brain, the origin of color in materials, color theory in art, and the physics of electromag ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Morphism
In mathematics, particularly in category theory, a morphism is a structure-preserving map from one mathematical structure to another one of the same type. The notion of morphism recurs in much of contemporary mathematics. In set theory, morphisms are functions; in linear algebra, linear transformations; in group theory, group homomorphisms; in topology, continuous functions, and so on. In category theory, ''morphism'' is a broadly similar idea: the mathematical objects involved need not be sets, and the relationships between them may be something other than maps, although the morphisms between the objects of a given category have to behave similarly to maps in that they have to admit an associative operation similar to function composition. A morphism in category theory is an abstraction of a homomorphism. The study of morphisms and of the structures (called "objects") over which they are defined is central to category theory. Much of the terminology of morphisms, as well as the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Groupoid
In mathematics, especially in category theory and homotopy theory, a groupoid (less often Brandt groupoid or virtual group) generalises the notion of group in several equivalent ways. A groupoid can be seen as a: *''Group'' with a partial function replacing the binary operation; *''Category'' in which every morphism is invertible. A category of this sort can be viewed as augmented with a unary operation on the morphisms, called ''inverse'' by analogy with group theory. A groupoid where there is only one object is a usual group. In the presence of dependent typing, a category in general can be viewed as a typed monoid, and similarly, a groupoid can be viewed as simply a typed group. The morphisms take one from one object to another, and form a dependent family of types, thus morphisms might be typed g:A \rightarrow B, h:B \rightarrow C, say. Composition is then a total function: \circ : (B \rightarrow C) \rightarrow (A \rightarrow B) \rightarrow A \rightarrow C , so that h \circ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Internal Category
In mathematics, more specifically in category theory, internal categories are a generalisation of the notion of small category, and are defined with respect to a fixed ambient category. If the ambient category is taken to be the category of sets then one recovers the theory of small categories. In general, internal categories consist of a pair of objects in the ambient category—thought of as the 'object of objects' and 'object of morphisms'—together with a collection of morphisms in the ambient category satisfying certain identities. Group objects, are common examples of internal categories. There are notions of internal functors and natural transformations that make the collection of internal categories in a fixed category into a 2-category. Definitions Let C be a category with pullbacks. An internal category in C consists of the following data: two C-objects C_0,C_1 named "object of objects" and "object of morphisms" respectively and four C-arrows d_0,d_1:C_1\rightarrow C_0, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Enriched Category
In category theory, a branch of mathematics, an enriched category generalizes the idea of a category by replacing hom-sets with objects from a general monoidal category. It is motivated by the observation that, in many practical applications, the hom-set often has additional structure that should be respected, e.g., that of being a vector space of morphisms, or a topological space of morphisms. In an enriched category, the set of morphisms (the hom-set) associated with every pair of objects is replaced by an object in some fixed monoidal category of "hom-objects". In order to emulate the (associative) composition of morphisms in an ordinary category, the hom-category must have a means of composing hom-objects in an associative manner: that is, there must be a binary operation on objects giving us at least the structure of a monoidal category, though in some contexts the operation may also need to be commutative and perhaps also to have a right adjoint (i.e., making the category sym ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Topoi
In mathematics, a topos (, ; plural topoi or , or toposes) is a category that behaves like the category of sheaves of sets on a topological space (or more generally: on a site). Topoi behave much like the category of sets and possess a notion of localization; they are a direct generalization of point-set topology. The Grothendieck topoi find applications in algebraic geometry; the more general elementary topoi are used in logic. The mathematical field that studies topoi is called topos theory. Grothendieck topos (topos in geometry) Since the introduction of sheaves into mathematics in the 1940s, a major theme has been to study a space by studying sheaves on a space. This idea was expounded by Alexander Grothendieck by introducing the notion of a "topos". The main utility of this notion is in the abundance of situations in mathematics where topological heuristics are very effective, but an honest topological space is lacking; it is sometimes possible to find a topos forma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Parametrized Category
In mathematics, a parametric equation defines a group of quantities as functions of one or more independent variables called parameters. Parametric equations are commonly used to express the coordinates of the points that make up a geometric object such as a curve or surface, in which case the equations are collectively called a parametric representation or parameterization (alternatively spelled as parametrisation) of the object. For example, the equations :\begin x &= \cos t \\ y &= \sin t \end form a parametric representation of the unit circle, where ''t'' is the parameter: A point (''x'', ''y'') is on the unit circle if and only if there is a value of ''t'' such that these two equations generate that point. Sometimes the parametric equations for the individual scalar output variables are combined into a single parametric equation in vectors: :(x, y)=(\cos t, \sin t). Parametric representations are generally nonunique (see the "Examples in two dimensions" section belo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Variable Category
Variable may refer to: * Variable (computer science), a symbolic name associated with a value and whose associated value may be changed * Variable (mathematics), a symbol that represents a quantity in a mathematical expression, as used in many sciences * Variable (research), a logical set of attributes * Variable star, a type of astronomical star * "The Variable", an episode of the television series ''Lost'' See also * Variability (other) Variability is how spread out or closely clustered a set of data is. Variability may refer to: Biology *Genetic variability, a measure of the tendency of individual genotypes in a population to vary from one another *Heart rate variability, a phy ...
{{Disambiguation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bicategory
In mathematics, a bicategory (or a weak 2-category) is a concept in category theory used to extend the notion of category to handle the cases where the composition of morphisms is not (strictly) associative, but only associative ''up to'' an isomorphism. The notion was introduced in 1967 by Jean Bénabou. Bicategories may be considered as a weakening of the definition of 2-categories. A similar process for 3-categories leads to tricategories, and more generally to weak ''n''-categories for ''n''-categories. Definition Formally, a bicategory B consists of: * objects ''a'', ''b'', ... called 0-''cells''; * morphisms ''f'', ''g'', ... with fixed source and target objects called 1-''cells''; * "morphisms between morphisms" ρ, σ, ... with fixed source and target morphisms (which should have themselves the same source and the same target), called 2-''cells''; with some more structure: * given two objects ''a'' and ''b'' there is a category B(''a'', ''b'') whose objects are the 1- ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematical Biology
Mathematical and theoretical biology, or biomathematics, is a branch of biology which employs theoretical analysis, mathematical models and abstractions of the living organisms to investigate the principles that govern the structure, development and behavior of the systems, as opposed to experimental biology which deals with the conduction of experiments to prove and validate the scientific theories. The field is sometimes called mathematical biology or biomathematics to stress the mathematical side, or theoretical biology to stress the biological side. Theoretical biology focuses more on the development of theoretical principles for biology while mathematical biology focuses on the use of mathematical tools to study biological systems, even though the two terms are sometimes interchanged. Mathematical biology aims at the mathematical representation and modeling of biological processes, using techniques and tools of applied mathematics. It can be useful in both theoretical and prac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Topological Quantum Field Theory
In gauge theory and mathematical physics, a topological quantum field theory (or topological field theory or TQFT) is a quantum field theory which computes topological invariants. Although TQFTs were invented by physicists, they are also of mathematical interest, being related to, among other things, knot theory and the theory of four-manifolds in algebraic topology, and to the theory of moduli spaces in algebraic geometry. Donaldson, Jones, Witten, and Kontsevich have all won Fields Medals for mathematical work related to topological field theory. In condensed matter physics, topological quantum field theories are the low-energy effective theories of topologically ordered states, such as fractional quantum Hall states, string-net condensed states, and other strongly correlated quantum liquid states. Overview In a topological field theory, correlation functions do not depend on the metric of spacetime. This means that the theory is not sensitive to changes in the shape of sp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]