Hessenberg Matrix
   HOME
*





Hessenberg Matrix
In linear algebra, a Hessenberg matrix is a special kind of square matrix, one that is "almost" triangular. To be exact, an upper Hessenberg matrix has zero entries below the first subdiagonal, and a lower Hessenberg matrix has zero entries above the first superdiagonal. They are named after Karl Hessenberg. Definitions Upper Hessenberg matrix A square n \times n matrix A is said to be in upper Hessenberg form or to be an upper Hessenberg matrix if a_=0 for all i,j with i > j+1. An upper Hessenberg matrix is called unreduced if all subdiagonal entries are nonzero, i.e. if a_ \neq 0 for all i \in \. Lower Hessenberg matrix A square n \times n matrix A is said to be in lower Hessenberg form or to be a lower Hessenberg matrix if its transpose is an upper Hessenberg matrix or equivalently if a_=0 for all i,j with j > i+1. A lower Hessenberg matrix is called unreduced if all superdiagonal entries are nonzero, i.e. if a_ \neq 0 for all i \in \. Examples Consider the following matri ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Linear Algebra
Linear algebra is the branch of mathematics concerning linear equations such as: :a_1x_1+\cdots +a_nx_n=b, linear maps such as: :(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n, and their representations in vector spaces and through matrices. Linear algebra is central to almost all areas of mathematics. For instance, linear algebra is fundamental in modern presentations of geometry, including for defining basic objects such as lines, planes and rotations. Also, functional analysis, a branch of mathematical analysis, may be viewed as the application of linear algebra to spaces of functions. Linear algebra is also used in most sciences and fields of engineering, because it allows modeling many natural phenomena, and computing efficiently with such models. For nonlinear systems, which cannot be modeled with linear algebra, it is often used for dealing with first-order approximations, using the fact that the differential of a multivariate function at a point is the linear ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tridiagonal Matrix
In linear algebra, a tridiagonal matrix is a band matrix that has nonzero elements only on the main diagonal, the subdiagonal/lower diagonal (the first diagonal below this), and the supradiagonal/upper diagonal (the first diagonal above the main diagonal). For example, the following matrix is tridiagonal: :\begin 1 & 4 & 0 & 0 \\ 3 & 4 & 1 & 0 \\ 0 & 2 & 3 & 4 \\ 0 & 0 & 1 & 3 \\ \end. The determinant of a tridiagonal matrix is given by the ''continuant'' of its elements. An orthogonal transformation of a symmetric (or Hermitian) matrix to tridiagonal form can be done with the Lanczos algorithm. Properties A tridiagonal matrix is a matrix that is both upper and lower Hessenberg matrix. In particular, a tridiagonal matrix is a direct sum of ''p'' 1-by-1 and ''q'' 2-by-2 matrices such that — the dimension of the tridiagonal. Although a general tridiagonal matrix is not necessarily symmetric or Hermitian, many of those that arise when solving linear algebra problems have one of th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cambridge University Press
Cambridge University Press is the university press of the University of Cambridge. Granted letters patent by Henry VIII of England, King Henry VIII in 1534, it is the oldest university press A university press is an academic publishing house specializing in monographs and scholarly journals. Most are nonprofit organizations and an integral component of a large research university. They publish work that has been reviewed by schola ... in the world. It is also the King's Printer. Cambridge University Press is a department of the University of Cambridge and is both an academic and educational publisher. It became part of Cambridge University Press & Assessment, following a merger with Cambridge Assessment in 2021. With a global sales presence, publishing hubs, and offices in more than 40 Country, countries, it publishes over 50,000 titles by authors from over 100 countries. Its publishing includes more than 380 academic journals, monographs, reference works, school and uni ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hessenberg Variety
In geometry, Hessenberg varieties, first studied by Filippo De Mari, Claudio Procesi, and Mark A. Shayman, are a family of subvarieties of the full flag variety which are defined by a Hessenberg function ''h'' and a linear transformation ''X''. The study of Hessenberg varieties was first motivated by questions in numerical analysis in relation to algorithms for computing eigenvalues and eigenspaces of the linear operator ''X''. Later work by T. A. Springer, Dale Peterson, Bertram Kostant, among others, found connections with combinatorics, representation theory and cohomology. Definitions A ''Hessenberg function'' is a map :h :\ \rightarrow \ such that : h(i+1) \geq \text(i,h(i)) for each ''i''. For example, the function that sends the numbers 1 to 5 (in order) to 2, 3, 3, 4, and 5 is a Hessenberg function. For any Hessenberg function ''h'' and a linear transformation : X: \Complex^n \rightarrow \Complex^n, \, the ''Hessenberg variety'' \mathcal(X,h) is th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bergman Polynomial
Bergman is a surname of German, Swedish, Dutch and Yiddish origin meaning 'mountain man', or sometimes (only in German) 'miner'.https://www.ancestry.com/name-origin?surname=bergmann People * Alan Bergman (born 1925), American songwriter * Alan Bergman (1943–2010), American ballet dancer * Alfred Bergman (1889–1961), American baseball and football player * Amanda Bergman (born 1987), Swedish musician *Andrew Bergman (born 1945), American film director * Anita Bergman, Canadian politician * Bo Bergman (1869–1967), Swedish poet * Borah Bergman (1926–2012), American pianist * Cam Bergman (born 1983), Canadian lacrosse player * Carl Bergman (born 1987), Swedish tennis player * Carl Johan Bergman (born 1978), Swedish biathlete * Charlotte Bergman (1903–2002), Belgian art collector and philanthropist * Christian Bergman (born 1988), American baseball player * Dag Bergman (1914–1984), Swedish diplomat *Daniel Bergman (born 1962), Swedish film director *Dave Bergman (1953–2015 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Characteristic Polynomial
In linear algebra, the characteristic polynomial of a square matrix is a polynomial which is invariant under matrix similarity and has the eigenvalues as roots. It has the determinant and the trace of the matrix among its coefficients. The characteristic polynomial of an endomorphism of a finite-dimensional vector space is the characteristic polynomial of the matrix of that endomorphism over any base (that is, the characteristic polynomial does not depend on the choice of a basis). The characteristic equation, also known as the determinantal equation, is the equation obtained by equating the characteristic polynomial to zero. In spectral graph theory, the characteristic polynomial of a graph is the characteristic polynomial of its adjacency matrix. Motivation In linear algebra, eigenvalues and eigenvectors play a fundamental role, since, given a linear transformation, an eigenvector is a vector whose direction is not changed by the transformation, and the corresponding eigenva ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Eigenvalue
In linear algebra, an eigenvector () or characteristic vector of a linear transformation is a nonzero vector that changes at most by a scalar factor when that linear transformation is applied to it. The corresponding eigenvalue, often denoted by \lambda, is the factor by which the eigenvector is scaled. Geometrically, an eigenvector, corresponding to a real nonzero eigenvalue, points in a direction in which it is stretched by the transformation and the eigenvalue is the factor by which it is stretched. If the eigenvalue is negative, the direction is reversed. Loosely speaking, in a multidimensional vector space, the eigenvector is not rotated. Formal definition If is a linear transformation from a vector space over a field into itself and is a nonzero vector in , then is an eigenvector of if is a scalar multiple of . This can be written as T(\mathbf) = \lambda \mathbf, where is a scalar in , known as the eigenvalue, characteristic value, or characteristic root ass ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Shift Operator
In mathematics, and in particular functional analysis, the shift operator also known as translation operator is an operator that takes a function to its translation . In time series analysis, the shift operator is called the lag operator. Shift operators are examples of linear operators, important for their simplicity and natural occurrence. The shift operator action on functions of a real variable plays an important role in harmonic analysis, for example, it appears in the definitions of almost periodic functions, positive-definite functions, derivatives, and convolution. Shifts of sequences (functions of an integer variable) appear in diverse areas such as Hardy spaces, the theory of abelian varieties, and the theory of symbolic dynamics, for which the baker's map is an explicit representation. Definition Functions of a real variable The shift operator (where ) takes a function on R to its translation , : T^t f(x) = f_t(x) = f(x+t)~. A practical operational calculus ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bergman Space
In complex analysis, functional analysis and operator theory, a Bergman space, named after Stefan Bergman, is a function space of holomorphic functions in a domain ''D'' of the complex plane that are sufficiently well-behaved at the boundary that they are absolutely integrable. Specifically, for , the Bergman space is the space of all holomorphic functions f in ''D'' for which the p-norm is finite: :\, f\, _ := \left(\int_D , f(x+iy), ^p\,\mathrm dx\,\mathrm dy\right)^ < \infty. The quantity \, f\, _ is called the ''norm'' of the function ; it is a true if p \geq 1. Thus is the subspace of holomorphic functions that are in the space L''p''(''D''). The Bergman spaces are

picture info

Holomorphic Functions
In mathematics, a holomorphic function is a complex-valued function of one or more complex variables that is complex differentiable in a neighbourhood of each point in a domain in complex coordinate space . The existence of a complex derivative in a neighbourhood is a very strong condition: it implies that a holomorphic function is infinitely differentiable and locally equal to its own Taylor series (''analytic''). Holomorphic functions are the central objects of study in complex analysis. Though the term ''analytic function'' is often used interchangeably with "holomorphic function", the word "analytic" is defined in a broader sense to denote any function (real, complex, or of more general type) that can be written as a convergent power series in a neighbourhood of each point in its domain. That all holomorphic functions are complex analytic functions, and vice versa, is a major theorem in complex analysis. Holomorphic functions are also sometimes referred to as ''regular ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Square-integrable
In mathematics, a square-integrable function, also called a quadratically integrable function or L^2 function or square-summable function, is a real number, real- or complex number, complex-valued measurable function for which the integral of the square of the absolute value is finite. Thus, square-integrability on the real line (-\infty,+\infty) is defined as follows. One may also speak of quadratic integrability over bounded intervals such as [a,b] for a \leq b. An equivalent definition is to say that the square of the function itself (rather than of its absolute value) is Lebesgue integrable. For this to be true, the integrals of the positive and negative portions of the real part must both be finite, as well as those for the imaginary part. The vector space of square integrable functions (with respect to Lebesgue measure) forms the Lp space, ''Lp'' space with p=2. Among the ''Lp'' spaces, the class of square integrable functions is unique in being compatible with an Inner ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Orthogonal Polynomials
In mathematics, an orthogonal polynomial sequence is a family of polynomials such that any two different polynomials in the sequence are orthogonality, orthogonal to each other under some inner product. The most widely used orthogonal polynomials are the classical orthogonal polynomials, consisting of the Hermite polynomials, the Laguerre polynomials and the Jacobi polynomials. The Gegenbauer polynomials form the most important class of Jacobi polynomials; they include the Chebyshev polynomials, and the Legendre polynomials as special cases. The field of orthogonal polynomials developed in the late 19th century from a study of continued fractions by Pafnuty Chebyshev, P. L. Chebyshev and was pursued by Andrey Markov, A. A. Markov and Thomas Joannes Stieltjes, T. J. Stieltjes. They appear in a wide variety of fields: numerical analysis (Gaussian quadrature, quadrature rules), probability theory, representation theory (of Lie group, Lie groups, quantum group, quantum groups, and re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]