Hongkai Zhao
   HOME
*





Hongkai Zhao
Hongkai Zhao is a Chinese mathematician and Ruth F. DeVarney Distinguished Professor of Mathematics at Duke University. He was formerly the Chancellor's Professor in the Department of Mathematics at the University of California, Irvine. He is known for his work in scientific computing, imaging and numerical analysis, such as the fast sweeping method for Hamilton-Jacobi equation and numerical methods for moving interface problems. Zhao had obtained his Bachelor of Science degree in the applied mathematics from the Peking University in 1990 and two years later got his Master's in the same field from the University of Southern California. From 1992 to 1996 he attended University of California, Los Angeles where he got his Ph.D. in mathematics. From 1996 to 1998 Zhao was a Gábor Szegő Assistant Professor at the Department of Mathematics of Stanford University and then got promoted to Research Associate which he kept till 1999. He has been at the University of California, Irvine ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE