Hom Bifunctor
In mathematics, specifically in category theory, hom-sets (i.e. sets of morphisms between objects) give rise to important functors to the category of sets. These functors are called hom-functors and have numerous applications in category theory and other branches of mathematics. Formal definition Let ''C'' be a locally small category (i.e. a category for which hom-classes are actually sets and not proper classes). For all objects ''A'' and ''B'' in ''C'' we define two functors to the category of sets as follows: : The functor Hom(–, ''B'') is also called the ''functor of points'' of the object ''B''. Note that fixing the first argument of Hom naturally gives rise to a covariant functor and fixing the second argument naturally gives a contravariant functor. This is an artifact of the way in which one must compose the morphisms. The pair of functors Hom(''A'', –) and Hom(–, ''B'') are related in a natural manner. For any pair of morphisms ''f'' : ''B'' → ''B'' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Natural Transformation
In category theory, a branch of mathematics, a natural transformation provides a way of transforming one functor into another while respecting the internal structure (i.e., the composition of morphisms) of the categories involved. Hence, a natural transformation can be considered to be a "morphism of functors". Informally, the notion of a natural transformation states that a particular map between functors can be done consistently over an entire category. Indeed, this intuition can be formalized to define so-called functor categories. Natural transformations are, after categories and functors, one of the most fundamental notions of category theory and consequently appear in the majority of its applications. Definition If F and G are functors between the categories C and D , then a natural transformation \eta from F to G is a family of morphisms that satisfies two requirements. # The natural transformation must associate, to every object X in C, a morphism \eta_X : F ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Natural Isomorphism
In category theory, a branch of mathematics, a natural transformation provides a way of transforming one functor into another while respecting the internal structure (i.e., the composition of morphisms) of the categories involved. Hence, a natural transformation can be considered to be a "morphism of functors". Informally, the notion of a natural transformation states that a particular map between functors can be done consistently over an entire category. Indeed, this intuition can be formalized to define so-called functor categories. Natural transformations are, after categories and functors, one of the most fundamental notions of category theory and consequently appear in the majority of its applications. Definition If F and G are functors between the categories C and D , then a natural transformation \eta from F to G is a family of morphisms that satisfies two requirements. # The natural transformation must associate, to every object X in C, a morphism \eta_X : F(X) ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Monoidal Category
In mathematics, a monoidal category (or tensor category) is a category \mathbf C equipped with a bifunctor :\otimes : \mathbf \times \mathbf \to \mathbf that is associative up to a natural isomorphism, and an object ''I'' that is both a left and right identity for ⊗, again up to a natural isomorphism. The associated natural isomorphisms are subject to certain coherence conditions, which ensure that all the relevant diagrams commute. The ordinary tensor product makes vector spaces, abelian groups, ''R''-modules, or ''R''-algebras into monoidal categories. Monoidal categories can be seen as a generalization of these and other examples. Every (small) monoidal category may also be viewed as a "categorification" of an underlying monoid, namely the monoid whose elements are the isomorphism classes of the category's objects and whose binary operation is given by the category's tensor product. A rather different application, of which monoidal categories can be considered an abstractio ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Currying
In mathematics and computer science, currying is the technique of translating the evaluation of a function that takes multiple arguments into evaluating a sequence of functions, each with a single argument. For example, currying a function f that takes three arguments creates a nested unary function g, so that the code :\textx=f(a,b,c) gives x the same value as the code : \begin \texth = g(a) \\ \texti = h(b) \\ \textx = i(c), \end or called in sequence, :\textx = g(a)(b)(c). In a more mathematical language, a function that takes two arguments, one from X and one from Y, and produces outputs in Z, by currying is translated into a function that takes a single argument from X and produces as outputs ''functions'' from Y to Z. This is a natural one-to-one correspondence between these two types of functions, so that the sets together with functions between them form a Cartesian closed category. The currying of a function with more than two arguments can then be defined by induction. Cur ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Closed Monoidal Category
In mathematics, especially in category theory, a closed monoidal category (or a ''monoidal closed category'') is a category that is both a monoidal category and a closed category in such a way that the structures are compatible. A classic example is the category of sets, Set, where the monoidal product of sets A and B is the usual cartesian product A \times B, and the internal Hom B^A is the set of functions from A to B. A non- cartesian example is the category of vector spaces, ''K''-Vect, over a field K. Here the monoidal product is the usual tensor product of vector spaces, and the internal Hom is the vector space of linear maps from one vector space to another. The internal language of closed symmetric monoidal categories is linear logic and the type system is the linear type system. Many examples of closed monoidal categories are symmetric. However, this need not always be the case, as non-symmetric monoidal categories can be encountered in category-theoretic formulatio ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Unit Object
In mathematics, a monoidal category (or tensor category) is a category \mathbf C equipped with a bifunctor :\otimes : \mathbf \times \mathbf \to \mathbf that is associative up to a natural isomorphism, and an object ''I'' that is both a left and right identity for ⊗, again up to a natural isomorphism. The associated natural isomorphisms are subject to certain coherence conditions, which ensure that all the relevant diagrams commute. The ordinary tensor product makes vector spaces, abelian groups, ''R''-modules, or ''R''-algebras into monoidal categories. Monoidal categories can be seen as a generalization of these and other examples. Every (small) monoidal category may also be viewed as a "categorification" of an underlying monoid, namely the monoid whose elements are the isomorphism classes of the category's objects and whose binary operation is given by the category's tensor product. A rather different application, of which monoidal categories can be considered an abstraction ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Closed Category
In category theory, a branch of mathematics, a closed category is a special kind of category. In a locally small category, the ''external hom'' (''x'', ''y'') maps a pair of objects to a set of morphisms. So in the category of sets, this is an object of the category itself. In the same vein, in a closed category, the (object of) morphisms from one object to another can be seen as lying inside the category. This is the ''internal hom'' 'x'', ''y'' Every closed category has a forgetful functor to the category of sets, which in particular takes the internal hom to the external hom. Definition A closed category can be defined as a category \mathcal with a so-called internal Hom functor : \left \ -\right: \mathcal^ \times \mathcal \to \mathcal with left Yoneda arrows : L : \left \ C\right\to \left left[A\ B\right\left[A\ C\right">\_B\right.html" ;"title="left[A\ B\right">left[A\ B\right\left[A\ C\rightright] natural transformation, natural in B and C and dinatural transformation ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Category Of Relations
In mathematics, the category Rel has the class of sets as objects and binary relations as morphisms. A morphism (or arrow) ''R'' : ''A'' → ''B'' in this category is a relation between the sets ''A'' and ''B'', so . The composition of two relations ''R'': ''A'' → ''B'' and ''S'': ''B'' → ''C'' is given by :(''a'', ''c'') ∈ ''S'' o ''R'' ⇔ for some ''b'' ∈ ''B'', (''a'', ''b'') ∈ ''R'' and (''b'', ''c'') ∈ ''S''. Rel has also been called the "category of correspondences of sets". Properties The category Rel has the category of sets Set as a (wide) subcategory, where the arrow in Set corresponds to the relation defined by .This category is called SetRel by Rydeheard and Burstall. A morphism in Rel is a relation, and the corresponding morphism in the opposite category to Rel has arrows reversed, so it is the converse relation. Thus Rel contains its opposite and is self-dual. The involution represented by taking the converse relation provides the dagger to ma ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Functor Category
In category theory, a branch of mathematics, a functor category D^C is a category where the objects are the functors F: C \to D and the morphisms are natural transformations \eta: F \to G between the functors (here, G: C \to D is another object in the category). Functor categories are of interest for two main reasons: * many commonly occurring categories are (disguised) functor categories, so any statement proved for general functor categories is widely applicable; * every category embeds in a functor category (via the Yoneda embedding); the functor category often has nicer properties than the original category, allowing certain operations that were not available in the original setting. Definition Suppose C is a small category (i.e. the objects and morphisms form a set rather than a proper class) and D is an arbitrary category. The category of functors from C to D, written as Fun(C, D), Funct(C,D), ,D/math>, or D ^C, has as objects the covariant functors from C to D, and as mo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Full And Faithful Functors
In category theory, a faithful functor is a functor that is injective on hom-sets, and a full functor is surjective on hom-sets. A functor that has both properties is called a full and faithful functor. Formal definitions Explicitly, let ''C'' and ''D'' be (locally small) categories and let ''F'' : ''C'' → ''D'' be a functor from ''C'' to ''D''. The functor ''F'' induces a function :F_\colon\mathrm_(X,Y)\rightarrow\mathrm_(F(X),F(Y)) for every pair of objects ''X'' and ''Y'' in ''C''. The functor ''F'' is said to be *faithful if ''F''''X'',''Y'' is injectiveJacobson (2009), p. 22 *full if ''F''''X'',''Y'' is surjectiveMac Lane (1971), p. 14 *fully faithful (= full and faithful) if ''F''''X'',''Y'' is bijective for each ''X'' and ''Y'' in ''C''. A mnemonic for remembering the term "full" is that the image of the function fills the codomain; a mnemonic for remembering the term "faithful" is that you can trust (have faith) that F(X)=F(Y) implies X=Y. Properties A faithful functor ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Yoneda's Lemma
In mathematics, the Yoneda lemma is arguably the most important result in category theory. It is an abstract result on functors of the type ''morphisms into a fixed object''. It is a vast generalisation of Cayley's theorem from group theory (viewing a group as a miniature category with just one object and only isomorphisms). It allows the embedding of any locally small category into a category of functors (contravariant set-valued functors) defined on that category. It also clarifies how the embedded category, of representable functors and their natural transformations, relates to the other objects in the larger functor category. It is an important tool that underlies several modern developments in algebraic geometry and representation theory. It is named after Nobuo Yoneda. Generalities The Yoneda lemma suggests that instead of studying the locally small category \mathcal , one should study the category of all functors of \mathcal into \mathbf (the category of sets with f ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |