History Of Mass Spectrometry
The history of mass spectrometry has its roots in physical and chemical studies regarding the nature of matter. The study of gas discharges in the mid 19th century led to the discovery of anode and cathode rays, which turned out to be positive ions and electrons. Improved capabilities in the separation of these positive ions enabled the discovery of stable isotopes of the elements. The first such discovery was with the element neon, which was shown by mass spectrometry to have at least two stable isotopes: 20Ne (neon with 10 protons and 10 neutrons) and 22Ne (neon with 10 protons and 12 neutrons). Mass spectrometers were used in the Manhattan Project for the separation of isotopes of uranium necessary to create the atomic bomb. Prout's Hypothesis Prout's hypothesis was an early 19th-century attempt to explain the properties of the chemical elements using the internal structure of the atom. In 1815, the English chemist William Prout observed that the atomic weights that had been mea ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Early Mass Spectrometer (replica)
Early may refer to: History * The beginning or oldest part of a defined historical period, as opposed to middle or late periods, e.g.: ** Early Christianity ** Early modern Europe Places in the United States * Early, Iowa * Early, Texas * Early Branch, a stream in Missouri * Early County, Georgia Other uses * ''Early'' (Scritti Politti album), 2005 * ''Early'' (A Certain Ratio album), 2002 * Early (name) * Early effect, an effect in transistor physics * Early Records Early may refer to: History * The beginning or oldest part of a defined historical period, as opposed to middle or late periods, e.g.: ** Early Christianity ** Early modern Europe Places in the United States * Early, Iowa * Early, Texas * Early ..., a record label * the early part of the morning See also * Earley (other) {{disambiguation, geo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Atomic Weight
Relative atomic mass (symbol: ''A''; sometimes abbreviated RAM or r.a.m.), also known by the deprecated synonym atomic weight, is a dimensionless physical quantity defined as the ratio of the average mass of atoms of a chemical element in a given sample to the atomic mass constant. The atomic mass constant (symbol: ''m'') is defined as being of the mass of a carbon-12 atom. Since both quantities in the ratio are masses, the resulting value is dimensionless; hence the value is said to be ''relative''. For a single given sample, the relative atomic mass of a given element is the weighted arithmetic mean of the masses of the individual atoms (including their isotopes) that are present in the sample. This quantity can vary substantially between samples because the sample's origin (and therefore its radioactive history or diffusion history) may have produced unique combinations of isotopic abundances. For example, due to a different mixture of stable carbon-12 and carbon-13 isoto ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Anode Rays
An anode ray (also positive ray or canal ray) is a beam of positive ions that is created by certain types of gas-discharge tubes. They were first observed in Crookes tubes during experiments by the German scientist Eugen Goldstein, in 1886. Later work on anode rays by Wilhelm Wien and J. J. Thomson led to the development of mass spectrometry. Anode ray tube Goldstein used a gas-discharge tube which had a perforated cathode. When an electrical potential of several thousand volts is applied between the cathode and anode, faint luminous "rays" are seen extending from the holes in the back of the cathode. These rays are beams of particles moving in a direction opposite to the "cathode rays", which are streams of electrons which move toward the anode. Goldstein called these positive rays ''Kanalstrahlen'', "channel rays", or "canal rays", because these rays passed through the holes or ''channels'' in the cathode. The process by which anode rays are formed in a gas-discharge anode ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fluorescence
Fluorescence is the emission of light by a substance that has absorbed light or other electromagnetic radiation. It is a form of luminescence. In most cases, the emitted light has a longer wavelength, and therefore a lower photon energy, than the absorbed radiation. A perceptible example of fluorescence occurs when the absorbed radiation is in the ultraviolet region of the electromagnetic spectrum (invisible to the human eye), while the emitted light is in the visible region; this gives the fluorescent substance a distinct color that can only be seen when the substance has been exposed to UV light. Fluorescent materials cease to glow nearly immediately when the radiation source stops, unlike phosphorescent materials, which continue to emit light for some time after. Fluorescence has many practical applications, including mineralogy, gemology, medicine, chemical sensors (fluorescence spectroscopy), fluorescent labelling, dyes, biological detectors, cosmic-ray detection, vacu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Electrode
An electrode is an electrical conductor used to make contact with a nonmetallic part of a circuit (e.g. a semiconductor, an electrolyte, a vacuum or air). Electrodes are essential parts of batteries that can consist of a variety of materials depending on the type of battery. The electrophore, invented by Johan Wilcke, was an early version of an electrode used to study static electricity. Anode and cathode in electrochemical cells Electrodes are an essential part of any battery. The first electrochemical battery made was devised by Alessandro Volta and was aptly named the Voltaic cell. This battery consisted of a stack of copper and zinc electrodes separated by brine-soaked paper disks. Due to fluctuation in the voltage provided by the voltaic cell it wasn't very practical. The first practical battery was invented in 1839 and named the Daniell cell after John Frederic Daniell. Still making use of the zinc–copper electrode combination. Since then many more batteries have be ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Johann Wilhelm Hittorf
Johann Wilhelm Hittorf (27 March 1824 – 28 November 1914) was a German physicist who was born in Bonn and died in Münster, Germany. Hittorf was the first to compute the electricity-carrying capacity of charged atoms and molecules (ions), an important factor in understanding electrochemical reactions. He formulated ion transport numbers and the first method for their measurements. He observed tubes with energy rays extending from a negative electrode. These rays produced a fluorescence when they hit the glass walls of the tubes. In 1876 the effect was named "cathode rays" by Eugen Goldstein. Hittorf's early investigations were on the allotropes of phosphorus and selenium. Between 1853 and 1859 his most important work was on ion movement caused by electric current. In 1853 Hittorf pointed out that some ions traveled more rapidly than others. This observation led to the concept of transport number, the fraction of the electric current carried by each ionic species. He measured ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Discharge Tubes
A gas-filled tube, also commonly known as a discharge tube or formerly as a Plücker tube, is an arrangement of electrodes in a gas within an insulating, temperature-resistant envelope. Gas-filled tubes exploit phenomena related to electric discharge in gases, and operate by ionizing the gas with an applied voltage sufficient to cause electrical conduction by the underlying phenomena of the Townsend discharge. A gas-discharge lamp is an electric light using a gas-filled tube; these include fluorescent lamps, metal-halide lamps, sodium-vapor lamps, and neon lights. Specialized gas-filled tubes such as krytrons, thyratrons, and ignitrons are used as switching devices in electric devices. The voltage required to initiate and sustain discharge is dependent on the pressure and composition of the fill gas and geometry of the tube. Although the envelope is typically glass, power tubes often use ceramics, and military tubes often use glass-lined metal. Both hot cathode and cold cath ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Julius Plücker
Julius Plücker (16 June 1801 – 22 May 1868) was a German mathematician and physicist. He made fundamental contributions to the field of analytical geometry and was a pioneer in the investigations of cathode rays that led eventually to the discovery of the electron. He also vastly extended the study of Lamé curves. Biography Early years Plücker was born at Elberfeld (now part of Wuppertal). After being educated at Düsseldorf and at the universities of Bonn, Heidelberg and Berlin he went to Paris in 1823, where he came under the influence of the great school of French geometers, whose founder, Gaspard Monge, had only recently died. In 1825 he returned to Bonn, and in 1828 was made professor of mathematics. In the same year he published the first volume of his ''Analytisch-geometrische Entwicklungen'', which introduced the method of "abridged notation". In 1831 he published the second volume, in which he clearly established on a firm and independent basis projective ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Anode Ray Tube
An anode is an electrode of a polarized electrical device through which conventional current enters the device. This contrasts with a cathode, an electrode of the device through which conventional current leaves the device. A common mnemonic is ACID, for "anode current into device". The direction of conventional current (the flow of positive charges) in a circuit is opposite to the direction of electron flow, so (negatively charged) electrons flow out the anode of a galvanic cell, into an outside or external circuit connected to the cell. For example, the end of a household battery marked with a "-" (minus) is the anode. In both a galvanic cell and an electrolytic cell, the anode is the electrode at which the oxidation reaction occurs. In a galvanic cell the anode is the wire or plate having excess negative charge as a result of the oxidation reaction. In an electrolytic cell, the anode is the wire or plate upon which excess positive charge is imposed. As a result of this, anion ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Chlorine
Chlorine is a chemical element with the Symbol (chemistry), symbol Cl and atomic number 17. The second-lightest of the halogens, it appears between fluorine and bromine in the periodic table and its properties are mostly intermediate between them. Chlorine is a yellow-green gas at room temperature. It is an extremely reactive element and a strong oxidising agent: among the elements, it has the highest electron affinity and the third-highest electronegativity on the revised Electronegativity#Pauling electronegativity, Pauling scale, behind only oxygen and fluorine. Chlorine played an important role in the experiments conducted by medieval Alchemy, alchemists, which commonly involved the heating of chloride Salt (chemistry), salts like ammonium chloride (sal ammoniac) and sodium chloride (common salt), producing various chemical substances containing chlorine such as hydrogen chloride, mercury(II) chloride (corrosive sublimate), and hydrochloric acid (in the form of ). However ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Edward Turner (chemist)
Edward Turner FRS FRSE FRCPE (24 June 1796 – 12 February 1837) was a Jamaican-born, British physician and chemist, known for his work on atomic weights, and as a populariser of the atomic theory of Dalton. He was the author of a popular chemistry textbook that was the first to incorporate chemical symbols and formulae as well as organic chemistry. Life He was born at Teak Pen in Clarendon, Jamaica, the eldest of nine children of Dutton Smith Turner (1755-1816) and Mary Gale Redwar (1776-1822), who were themselves children of Jamaican plantation owners. While he was young his parents relocated to Bath, where he received his early education at Bath Grammar School. Together with his younger brother, William Dutton Turner (28 June 1798 - June 1858), he attended the University of Edinburgh Medical School where they graduated M.D. in 1819 and 1820. William returned to Jamaica as a doctor in Spanish Town while Edward established a practice in Bath. After spending some time in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Jöns Jakob Berzelius
Jöns is a Swedish given name and a surname. Notable people with the given name include: * Jöns Jacob Berzelius (1779–1848), Swedish chemist * Jöns Budde (1435–1495), Franciscan friar from the Brigittine monastery in NaantaliVallis Gratiae - near Turku, Finland * Jöns Gerekesson (died 1433), controversial Archbishop of Uppsala, Sweden 1408–1421, and Iceland 1426–1433 until he was drowned * Jöns Peter Hemberg (1763–1834), Swedish banker and member of parliament * Jöns Bengtsson Oxenstierna (1417–1467), Swedish archbishop of Uppsala (1448–1467) and regent of Sweden * Jöns Svanberg (1771–1851), Swedish clergyman and natural scientist Notable people with the surname include: * Karin Jöns (born 1953), German politician and Member of the European Parliament with the Social Democratic Party of Germany See also * * * Jönssi * Jönsson Jönsson is a Nordic, mostly Swedish surname. Notable people with the surname include: *Alexander Achinioti-Jönsson (born ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |