HOME
*





Hilbert–Samuel Function
In commutative algebra the Hilbert–Samuel function, named after David Hilbert and Pierre Samuel,H. Hironaka, Resolution of Singularities of an Algebraic Variety Over a Field of Characteristic Zero: I. Ann. of Math. 2nd Ser., Vol. 79, No. 1. (Jan., 1964), pp. 109-203. of a nonzero finitely generated module M over a commutative Noetherian local ring A and a primary ideal I of A is the map \chi_^:\mathbb\rightarrow\mathbb such that, for all n\in\mathbb, :\chi_^(n)=\ell(M/I^M) where \ell denotes the length over A. It is related to the Hilbert function of the associated graded module \operatorname_I(M) by the identity : \chi_M^I (n)=\sum_^n H(\operatorname_I(M),i). For sufficiently large n, it coincides with a polynomial function of degree equal to \dim(\operatorname_I(M)), often called the Hilbert-Samuel polynomial (or Hilbert polynomial).Atiyah, M. F. and MacDonald, I. G. ''Introduction to Commutative Algebra''. Reading, MA: Addison–Wesley, 1969. Examples For the ring of form ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Commutative Algebra
Commutative algebra, first known as ideal theory, is the branch of algebra that studies commutative rings, their ideals, and modules over such rings. Both algebraic geometry and algebraic number theory build on commutative algebra. Prominent examples of commutative rings include polynomial rings; rings of algebraic integers, including the ordinary integers \mathbb; and ''p''-adic integers. Commutative algebra is the main technical tool in the local study of schemes. The study of rings that are not necessarily commutative is known as noncommutative algebra; it includes ring theory, representation theory, and the theory of Banach algebras. Overview Commutative algebra is essentially the study of the rings occurring in algebraic number theory and algebraic geometry. In algebraic number theory, the rings of algebraic integers are Dedekind rings, which constitute therefore an important class of commutative rings. Considerations related to modular arithmetic have led to the no ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Associated Graded Module
In mathematics, the associated graded ring of a ring ''R'' with respect to a proper ideal ''I'' is the graded ring: :\operatorname_I R = \oplus_^\infty I^n/I^. Similarly, if ''M'' is a left ''R''-module, then the associated graded module is the graded module over \operatorname_I R: :\operatorname_I M = \oplus_^\infty I^n M/ I^ M. Basic definitions and properties For a ring ''R'' and ideal ''I'', multiplication in \operatorname_IR is defined as follows: First, consider homogeneous elements a \in I^i/I^ and b \in I^j/I^ and suppose a' \in I^i is a representative of ''a'' and b' \in I^j is a representative of ''b''. Then define ab to be the equivalence class of a'b' in I^/I^. Note that this is well-defined modulo I^. Multiplication of inhomogeneous elements is defined by using the distributive property. A ring or module may be related to its associated graded ring or module through the initial form map. Let ''M'' be an ''R''-module and ''I'' an ideal of ''R''. Given f \in M, the ini ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


J-multiplicity
In algebra, a j-multiplicity is a generalization of a Hilbert–Samuel multiplicity. For ''m''-primary ideals, the two notions coincide. Definition Let (R, \mathfrak) be a local Noetherian ring of Krull dimension d > 0. Then the j-multiplicity of an ideal Ideal may refer to: Philosophy * Ideal (ethics), values that one actively pursues as goals * Platonic ideal, a philosophical idea of trueness of form, associated with Plato Mathematics * Ideal (ring theory), special subsets of a ring considere ... ''I'' is :j(I) = j(\operatorname_I R) where j(\operatorname_I R) is the normalized coefficient of the degree ''d'' − 1 term in the Hilbert polynomial \Gamma_\mathfrak(\operatorname_I R); \Gamma_\mathfrak means the space of sections supported at \mathfrak. References *Daniel Katz, Javid ValidashtiMultiplicities and Rees valuations* Commutative algebra {{commutative-algebra-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


David Eisenbud
David Eisenbud (born 8 April 1947 in New York City) is an American mathematician. He is a professor of mathematics at the University of California, Berkeley and Director of the Mathematical Sciences Research Institute (MSRI); he previously served as Director of MSRI from 1997 to 2007. Biography Eisenbud is the son of mathematical physicist Leonard Eisenbud, who was a student and collaborator of the renowned physicist Eugene Wigner. Eisenbud received his Ph.D. in 1970 from the University of Chicago, where he was a student of Saunders Mac Lane and, unofficially, James Christopher Robson. He then taught at Brandeis University from 1970 to 1997, during which time he had visiting positions at Harvard University, Institut des Hautes Études Scientifiques (IHÉS), University of Bonn, and Centre national de la recherche scientifique (CNRS). He joined the staff at MSRI in 1997, and took a position at Berkeley at the same time. From 2003 to 2005 Eisenbud was President of the American M ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Artin–Rees Lemma
In mathematics, the Artin–Rees lemma is a basic result about modules over a Noetherian ring, along with results such as the Hilbert basis theorem. It was proved in the 1950s in independent works by the mathematicians Emil Artin and David Rees; a special case was known to Oscar Zariski prior to their work. One consequence of the lemma is the Krull intersection theorem. The result is also used to prove the exactness property of completion. The lemma also plays a key role in the study of ℓ-adic sheaves. Statement Let ''I'' be an ideal in a Noetherian ring ''R''; let ''M'' be a finitely generated ''R''-module and let ''N'' a submodule of ''M''. Then there exists an integer ''k'' ≥ 1 so that, for ''n'' ≥ ''k'', :I^ M \cap N = I^ (I^ M \cap N). Proof The lemma immediately follows from the fact that ''R'' is Noetherian once necessary notions and notations are set up. For any ring ''R'' and an ideal ''I'' in ''R'', we set B_I R = \bigoplus_^\infty ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Formal Power Series
In mathematics, a formal series is an infinite sum that is considered independently from any notion of convergence, and can be manipulated with the usual algebraic operations on series (addition, subtraction, multiplication, division, partial sums, etc.). A formal power series is a special kind of formal series, whose terms are of the form a x^n where x^n is the nth power of a variable x (n is a non-negative integer), and a is called the coefficient. Hence, power series can be viewed as a generalization of polynomials, where the number of terms is allowed to be infinite, with no requirements of convergence. Thus, the series may no longer represent a function of its variable, merely a formal sequence of coefficients, in contrast to a power series, which defines a function by taking numerical values for the variable within a radius of convergence. In a formal power series, the x^n are used only as position-holders for the coefficients, so that the coefficient of x^5 is the fifth ter ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ring (mathematics)
In mathematics, rings are algebraic structures that generalize fields: multiplication need not be commutative and multiplicative inverses need not exist. In other words, a ''ring'' is a set equipped with two binary operations satisfying properties analogous to those of addition and multiplication of integers. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series. Formally, a ''ring'' is an abelian group whose operation is called ''addition'', with a second binary operation called ''multiplication'' that is associative, is distributive over the addition operation, and has a multiplicative identity element. (Some authors use the term " " with a missing i to refer to the more general structure that omits this last requirement; see .) Whether a ring is commutative (that is, whether the order in which two elements are multiplied might change the result) has ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hilbert Polynomial
In commutative algebra, the Hilbert function, the Hilbert polynomial, and the Hilbert series of a graded commutative algebra finitely generated over a field are three strongly related notions which measure the growth of the dimension of the homogeneous components of the algebra. These notions have been extended to filtered algebras, and graded or filtered modules over these algebras, as well as to coherent sheaves over projective schemes. The typical situations where these notions are used are the following: * The quotient by a homogeneous ideal of a multivariate polynomial ring, graded by the total degree. * The quotient by an ideal of a multivariate polynomial ring, filtered by the total degree. * The filtration of a local ring by the powers of its maximal ideal. In this case the Hilbert polynomial is called the Hilbert–Samuel polynomial. The Hilbert series of an algebra or a module is a special case of the Hilbert–Poincaré series of a graded vector space. The Hilbert ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hilbert Function
In commutative algebra, the Hilbert function, the Hilbert polynomial, and the Hilbert series of a graded commutative algebra finitely generated over a field are three strongly related notions which measure the growth of the dimension of the homogeneous components of the algebra. These notions have been extended to filtered algebras, and graded or filtered modules over these algebras, as well as to coherent sheaves over projective schemes. The typical situations where these notions are used are the following: * The quotient by a homogeneous ideal of a multivariate polynomial ring, graded by the total degree. * The quotient by an ideal of a multivariate polynomial ring, filtered by the total degree. * The filtration of a local ring by the powers of its maximal ideal. In this case the Hilbert polynomial is called the Hilbert–Samuel polynomial. The Hilbert series of an algebra or a module is a special case of the Hilbert–Poincaré series of a graded vector space. The Hilbert ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

David Hilbert
David Hilbert (; ; 23 January 1862 – 14 February 1943) was a German mathematician, one of the most influential mathematicians of the 19th and early 20th centuries. Hilbert discovered and developed a broad range of fundamental ideas in many areas, including invariant theory, the calculus of variations, commutative algebra, algebraic number theory, the foundations of geometry, spectral theory of operators and its application to integral equations, mathematical physics, and the foundations of mathematics (particularly proof theory). Hilbert adopted and defended Georg Cantor's set theory and transfinite numbers. In 1900, he presented a collection of problems that set the course for much of the mathematical research of the 20th century. Hilbert and his students contributed significantly to establishing rigor and developed important tools used in modern mathematical physics. Hilbert is known as one of the founders of proof theory and mathematical logic. Life Early life and edu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Length Of A Module
In abstract algebra, the length of a module is a generalization of the dimension of a vector space which measures its size. page 153 In particular, as in the case of vector spaces, the only modules of finite length are finitely generated modules. It is defined to be the length of the longest chain of submodules. Modules with ''finite'' length share many important properties with finite-dimensional vector spaces. Other concepts used to 'count' in ring and module theory are depth and height; these are both somewhat more subtle to define. Moreover, their use is more aligned with dimension theory whereas length is used to analyze finite modules. There are also various ideas of ''dimension'' that are useful. Finite length commutative rings play an essential role in functorial treatments of formal algebraic geometry and deformation theory where Artin rings are used extensively. Definition Length of a module Let M be a (left or right) module over some ring R. Given a chain of submo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Primary Ideal
In mathematics, specifically commutative algebra, a proper ideal ''Q'' of a commutative ring ''A'' is said to be primary if whenever ''xy'' is an element of ''Q'' then ''x'' or ''y''''n'' is also an element of ''Q'', for some ''n'' > 0. For example, in the ring of integers Z, (''p''''n'') is a primary ideal if ''p'' is a prime number. The notion of primary ideals is important in commutative ring theory because every ideal of a Noetherian ring has a primary decomposition, that is, can be written as an intersection of finitely many primary ideals. This result is known as the Lasker–Noether theorem. Consequently, an irreducible ideal of a Noetherian ring is primary. Various methods of generalizing primary ideals to noncommutative rings exist, but the topic is most often studied for commutative rings. Therefore, the rings in this article are assumed to be commutative rings with identity. Examples and properties * The definition can be rephrased in a more symmetric manner: ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]