Higher-order Compact Finite Difference Scheme
High-order compact finite difference schemes are used for solving third-order differential equations created during the study of obstacle boundary value problems. They have been shown to be highly accurate and efficient. They are constructed by modifying the second-order scheme that was developed by Noor and Al-Said in 2002. The convergence rate of the high-order compact scheme is third order, the second-order scheme is fourth order. Differential equations are essential tools in mathematical modelling. Most physical systems are described in terms of mathematical models that include convective and diffusive transport of some variables. Finite difference methods are amongst the most popular methods that have been applied most frequently in solving such differential equations. A finite difference scheme is compact in the sense that the discretised formula comprises at most nine point stencils which includes a node in the middle about which differences are taken. In addition, great ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
HOC Stencil
Hoc may refer to: * Head of Chancery * Hellenic Olympic Committee, one of the oldest National Olympic Committees * Hoc (Beowulf), a Danish King from Beowulf * Hoc (programming language), a calculator and programming language * Hypertrophic cardiomyopathy (Hypertrophic (Obstructive) cardiomyopathy), but HCM is the more common and accepted acronym for that condition * House of Commons, a legislative body of elected representatives in various countries * '' Hooked on Classics'', an album of popular classical music * Pointe du Hoc, a cliff in Normandy scaled by the U.S. Rangers in 1944 * House of Cards (other) * Ho language, identified by the ISO 639 3 code hoc * United States House Committee on Oversight and Reform, known as the House Oversight Committee * Hoc (card game), the progenitor of a family of French card games using ''hocs'' or 'stops' See also * Ad hoc Ad hoc is a Latin phrase meaning literally 'to this'. In English, it typically signifies a solution for a s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Differential Equations
In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, and the differential equation defines a relationship between the two. Such relations are common; therefore, differential equations play a prominent role in many disciplines including engineering, physics, economics, and biology. Mainly the study of differential equations consists of the study of their solutions (the set of functions that satisfy each equation), and of the properties of their solutions. Only the simplest differential equations are solvable by explicit formulas; however, many properties of solutions of a given differential equation may be determined without computing them exactly. Often when a closed-form expression for the solutions is not available, solutions may be approximated numerically using computers. The theor ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Obstacle Problem
The obstacle problem is a classic motivating example in the mathematical study of variational inequalities and free boundary problems. The problem is to find the equilibrium position of an elastic membrane whose boundary is held fixed, and which is constrained to lie above a given obstacle. It is deeply related to the study of minimal surfaces and the capacity of a set in potential theory as well. Applications include the study of fluid filtration in porous media, constrained heating, elasto-plasticity, optimal control, and financial mathematics.See . The mathematical formulation of the problem is to seek minimizers of the Dirichlet energy functional, :J = \int_D , \nabla u, ^2 \mathrmx in some domains ''D'' where the functions ''u'' represent the vertical displacement of the membrane. In addition to satisfying Dirichlet boundary conditions corresponding to the fixed boundary of the membrane, the functions ''u'' are in addition constrained to be greater than some given ''obs ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Convergence Rate
In numerical analysis, the order of convergence and the rate of convergence of a convergent sequence are quantities that represent how quickly the sequence approaches its limit. A sequence (x_n) that converges to x^* is said to have ''order of convergence'' q \geq 1 and ''rate of convergence'' \mu if : \lim _ \frac=\mu. The rate of convergence \mu is also called the ''asymptotic error constant''. Note that this terminology is not standardized and some authors will use ''rate'' where this article uses ''order'' (e.g., ). In practice, the rate and order of convergence provide useful insights when using iterative methods for calculating numerical approximations. If the order of convergence is higher, then typically fewer iterations are necessary to yield a useful approximation. Strictly speaking, however, the asymptotic behavior of a sequence does not give conclusive information about any finite part of the sequence. Similar concepts are used for discretization methods. The solutio ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Differential Equation
In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, and the differential equation defines a relationship between the two. Such relations are common; therefore, differential equations play a prominent role in many disciplines including engineering, physics, economics, and biology. Mainly the study of differential equations consists of the study of their solutions (the set of functions that satisfy each equation), and of the properties of their solutions. Only the simplest differential equations are solvable by explicit formulas; however, many properties of solutions of a given differential equation may be determined without computing them exactly. Often when a closed-form expression for the solutions is not available, solutions may be approximated numerically using computers. The theory ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematical Modelling
A mathematical model is a description of a system using mathematical concepts and language. The process of developing a mathematical model is termed mathematical modeling. Mathematical models are used in the natural sciences (such as physics, biology, earth science, chemistry) and engineering disciplines (such as computer science, electrical engineering), as well as in non-physical systems such as the social sciences (such as economics, psychology, sociology, political science). The use of mathematical models to solve problems in business or military operations is a large part of the field of operations research. Mathematical models are also used in music, linguistics, and philosophy (for example, intensively in analytic philosophy). A model may help to explain a system and to study the effects of different components, and to make predictions about behavior. Elements of a mathematical model Mathematical models can take many forms, including dynamical systems, statisti ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Physical System
A physical system is a collection of physical objects. In physics, it is a portion of the physical universe chosen for analysis. Everything outside the system is known as the environment. The environment is ignored except for its effects on the system. The split between system and environment is the analyst's choice, generally made to simplify the analysis. For example, the water in a lake, the water in half of a lake, or an individual molecule of water in the lake can each be considered a physical system. A Thermostat is one that has negligible interaction with its environment. Often a system in this sense is chosen to correspond to the more usual meaning of heat such as a particular machine. In the study of temperature , the "system" may refer to the microscopic properties of an object (e.g. the mean of a pendulum bob), while the relevant "environment" may be the internal degrees of freedom Degrees of freedom (often abbreviated df or DOF) refers to the number of indepen ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Finite Difference Method
In numerical analysis, finite-difference methods (FDM) are a class of numerical techniques for solving differential equations by approximating derivatives with finite differences. Both the spatial domain and time interval (if applicable) are discretized, or broken into a finite number of steps, and the value of the solution at these discrete points is approximated by solving algebraic equations containing finite differences and values from nearby points. Finite difference methods convert ordinary differential equations (ODE) or partial differential equations (PDE), which may be nonlinear, into a system of linear equations that can be solved by matrix algebra techniques. Modern computers can perform these linear algebra computations efficiently which, along with their relative ease of implementation, has led to the widespread use of FDM in modern numerical analysis. Today, FDM are one of the most common approaches to the numerical solution of PDE, along with finite element metho ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Stencil (numerical Analysis)
In mathematics, especially the areas of numerical analysis concentrating on the numerical solution of partial differential equations, a stencil is a geometric arrangement of a nodal group that relate to the point of interest by using a numerical approximation routine. Stencils are the basis for many algorithms to numerically solve partial differential equations (PDE). Two examples of stencils are the five-point stencil and the Crank–Nicolson method stencil. Stencils are classified into two categories: compact and non-compact, the difference being the layers from the point of interest that are also used for calculation. In the notation used for one-dimensional stencils n-1, n, n+1 indicate the time steps where timestep n and n-1 have known solutions and time step n+1 is to be calculated. The spatial location of finite volumes used in the calculation are indicated by j-1, j and j+1. Etymology Graphical representations of node arrangements and their coefficients arose early i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Node (autonomous System)
The behaviour of a linear autonomous system around a critical point is a node if the following conditions are satisfied: Each path converges to the or away from the critical point (dependent of the underlying equation) as t \rightarrow \infty (or as t \rightarrow - \infty ). Furthermore, each path approaches the point asymptotically through a line. George F. Simmons, Differential equations with applications and historical notes, Second edition, pp. 447–448. References Ordinary differential equations {{mathanalysis-stub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Truncation Error (numerical Integration)
Truncation errors in numerical integration are of two kinds: * ''local truncation errors'' – the error caused by one iteration, and * ''global truncation errors'' – the cumulative error caused by many iterations. Definitions Suppose we have a continuous differential equation : y' = f(t,y), \qquad y(t_0) = y_0, \qquad t \geq t_0 and we wish to compute an approximation y_n of the true solution y(t_n) at discrete time steps t_1,t_2,\ldots,t_N . For simplicity, assume the time steps are equally spaced: : h = t_n - t_, \qquad n=1,2,\ldots,N. Suppose we compute the sequence y_n with a one-step method of the form : y_n = y_ + h A(t_, y_, h, f). The function A is called the ''increment function'', and can be interpreted as an estimate of the slope \frac . Local truncation error The local truncation error \tau_n is the error that our increment function, A , causes during a single iteration, assuming perfect knowledge of the true solution at the previous ite ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Computational Fluid Dynamics
Computational fluid dynamics (CFD) is a branch of fluid mechanics that uses numerical analysis and data structures to analyze and solve problems that involve fluid flows. Computers are used to perform the calculations required to simulate the free-stream flow of the fluid, and the interaction of the fluid ( liquids and gases) with surfaces defined by boundary conditions. With high-speed supercomputers, better solutions can be achieved, and are often required to solve the largest and most complex problems. Ongoing research yields software that improves the accuracy and speed of complex simulation scenarios such as transonic or turbulent flows. Initial validation of such software is typically performed using experimental apparatus such as wind tunnels. In addition, previously performed analytical or empirical analysis of a particular problem can be used for comparison. A final validation is often performed using full-scale testing, such as flight tests. CFD is appli ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |