HOME
*





High Performance Fiber Reinforced Cementitious Composites
High-performance fiber-reinforced cementitious composites (HPFRCCs) are a group of fiber-reinforced cement-based composites that possess the unique ability to flex and self-strengthen before fracturing. This particular class of concrete was developed with the goal of solving the structural problems inherent with today’s typical concrete, such as its tendency to fail in a brittle manner under excessive loading and its lack of long-term durability. Because of their design and composition, HPFRCCs possess the remarkable ability to plastically yield and harden under excessive loading, so that they flex or deform before fracturing, a behavior similar to that exhibited by most metals under tensile or bending stresses. Because of this capability, HPFRCCs are more resistant to cracking and last considerably longer than normal concrete. Another extremely desirable property of HPFRCCs is their low density. A less dense, and hence lighter material means that HPFRCCs could eventually req ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Concrete
Concrete is a composite material composed of fine and coarse aggregate bonded together with a fluid cement (cement paste) that hardens (cures) over time. Concrete is the second-most-used substance in the world after water, and is the most widely used building material. Its usage worldwide, ton for ton, is twice that of steel, wood, plastics, and aluminum combined. Globally, the ready-mix concrete industry, the largest segment of the concrete market, is projected to exceed $600 billion in revenue by 2025. This widespread use results in a number of environmental impacts. Most notably, the production process for cement produces large volumes of greenhouse gas emissions, leading to net 8% of global emissions. Other environmental concerns include widespread illegal sand mining, impacts on the surrounding environment such as increased surface runoff or urban heat island effect, and potential public health implications from toxic ingredients. Significant research and development is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Plasticity (physics)
In physics and materials science, plasticity, also known as plastic deformation, is the ability of a solid material to undergo permanent Deformation (engineering), deformation, a non-reversible change of shape in response to applied forces. For example, a solid piece of metal being bent or pounded into a new shape displays plasticity as permanent changes occur within the material itself. In engineering, the transition from Elasticity (physics), elastic behavior to plastic behavior is known as Yield (engineering), yielding. Plastic deformation is observed in most materials, particularly metals, soils, Rock (geology), rocks, concrete, and foams. However, the physical mechanisms that cause plastic deformation can vary widely. At a crystalline scale, plasticity in metals is usually a consequence of dislocations. Such defects are relatively rare in most crystalline materials, but are numerous in some and part of their crystal structure; in such cases, plastic crystallinity can res ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Work Hardening
In materials science, work hardening, also known as strain hardening, is the strengthening of a metal or polymer by plastic deformation. Work hardening may be desirable, undesirable, or inconsequential, depending on the context. This strengthening occurs because of dislocation movements and dislocation generation within the crystal structure of the material. Many non-brittle metals with a reasonably high melting point as well as several polymers can be strengthened in this fashion. Alloys not amenable to heat treatment, including low-carbon steel, are often work-hardened. Some materials cannot be work-hardened at low temperatures, such as indium, however others can be strengthened only via work hardening, such as pure copper and aluminum. Undesirable work hardening An example of undesirable work hardening is during machining when early passes of a cutter inadvertently work-harden the workpiece surface, causing damage to the cutter during the later passes. Certain alloys are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Aggregate (composite)
Aggregate is the component of a composite material that resists compressive stress and provides bulk to the composite material. For efficient filling, aggregate should be much smaller than the finished item, but have a wide variety of sizes. For example, the particles of stone used to make concrete typically include both sand and gravel. Comparison to fiber composites ''Aggregate composites'' tend to be much easier to fabricate, and much more predictable in their finished properties, than '' fiber composites''. Fiber orientation and continuity can have an overwhelming effect, but can be difficult to control and assess. Fabrication aside, aggregate materials themselves also tend to be less expensive; the most common aggregates mentioned above are found in nature and can often be used with only minimal processing. Not all composite materials include aggregate. Aggregate particles tend to have about the same dimensions in every direction (that is, an aspect ratio of about one), so ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Plasticizer
A plasticizer ( UK: plasticiser) is a substance that is added to a material to make it softer and more flexible, to increase its plasticity, to decrease its viscosity, and/or to decrease friction during its handling in manufacture. Plasticizers are commonly added to polymers such as plastics and rubber, either to facilitate the handling of the raw material during fabrication, or to meet the demands of the end product's application. For example, plasticizers are commonly added to polyvinyl chloride (PVC), which otherwise is hard and brittle, to make it soft and pliable; which makes it suitable for products such as shower curtains, vinyl flooring, clothing, bags, flexible plastic tubing, and electric wire insulation/coating. Plasticizers are also often added to concrete formulations to make them more workable and fluid for pouring, thus allowing the water contents to be reduced. Similarly, they are often added to clays, stucco, solid rocket fuel, and other pastes prior t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Metallic Fiber
Metallic fibers are manufactured fibers composed of metal, metallic alloys, plastic-coated metal, metal-coated plastic, or a core completely covered by metal. Having their origin in textile and clothing applications, gold and silver fibers have been used since ancient times as yarns for fabric decoration. More recently, aluminium yarns, aluminized plastic yarns, and aluminized nylon yarns have replaced gold and silver. Today's metal fiber industry mainly offers fibers in stainless steel, nickel, titanium, copper and aluminium for various applications. Metallic filaments can be coated with transparent films to minimize tarnishing. Metal fiber may also be shaved from wire (steel wool), shaven from foil,An introduction to Metal Fiber Technology - White Paper - https://www.bekaert.com/en/product-catalog/content/Metal-fibers/replacement-of-glass-fiber-media-by-metal-fiber-media bundle drawn from larger diameter wire, machined from an ingot, cast from molten metal, or grown around a s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Elastic Limit
In materials science and engineering, the yield point is the point on a stress-strain curve that indicates the limit of elastic behavior and the beginning of plastic behavior. Below the yield point, a material will deform elastically and will return to its original shape when the applied stress is removed. Once the yield point is passed, some fraction of the deformation will be permanent and non-reversible and is known as plastic deformation. The yield strength or yield stress is a material property and is the stress corresponding to the yield point at which the material begins to deform plastically. The yield strength is often used to determine the maximum allowable load in a mechanical component, since it represents the upper limit to forces that can be applied without producing permanent deformation. In some materials, such as aluminium, there is a gradual onset of non-linear behavior, making the precise yield point difficult to determine. In such a case, the offset yiel ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Engineered Cementitious Composite
Engineered Cementitious Composite (ECC), also called Strain Hardening Cement-based Composites (SHCC) or more popularly as bendable concrete, is an easily molded mortar (masonry), mortar-based composite reinforced with specially selected short random fibers, usually polymer fibers. Unlike regular concrete, ECC has a tensile strain capacity in the range of 3–7%, compared to 0.01% for ordinary portland cement (OPC) paste, mortar or concrete. ECC therefore acts more like a ductile metal material rather than a brittle glass material (as does OPC concrete), leading to a wide variety of applications. Development ECC, unlike common fiber reinforced concrete, is a family of Microelectromechanical systems, micromechanically designed materials. As long as a cementitious material is designed/developed based on micromechanics and fracture mechanics theory to feature large tensile ductility, it can be called an ECC. Therefore, ECC is not a fixed material design, but a broad range of topics und ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

University Of Michigan
, mottoeng = "Arts, Knowledge, Truth" , former_names = Catholepistemiad, or University of Michigania (1817–1821) , budget = $10.3 billion (2021) , endowment = $17 billion (2021)As of October 25, 2021. , president = Santa Ono , provost = Laurie McCauley , established = , type = Public research university , academic_affiliations = , students = 48,090 (2021) , undergrad = 31,329 (2021) , postgrad = 16,578 (2021) , administrative_staff = 18,986 (2014) , faculty = 6,771 (2014) , city = Ann Arbor , state = Michigan , country = United States , coor = , campus = Midsize City, Total: , including arboretum , colors = Maize & Blue , nickname = Wolverines , sporti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Victor C
Repeater is a five-piece rock band from Long Beach, California. Biography The Main Frame days (2001-2004) The Main Frame was a Long Beach darkwave band formed in 2001 with Steve Krolikowski (vocals and guitar) and Rob Wallace (keyboard). After recording a full-length album, ''Curse of Evolution'' (2003) and an unreleased EP, the band decided to dissolve. Formation of Repeater (2005) Krolikowski and Wallace continued to work on music together, eventually forming Repeater and eventually added new members into the fold, including Alex Forsythe (guitar) and Matt Hanief (drums). Repeater released their first demo in 2005, followed by ''Motionless Hour'' EP in 2007 and their full-length album, ''Iron Flowers'' in 2008. Both ''Motionless Hour'' and ''Iron Flowers'' were released through the band's own Document Records. Work with Ross Robinson (2010) In 2010, the band was discovered by renowned producer, Ross Robinson. Robinson produced the band's next EP called ''Patterns'', as w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fiber Reinforced Concrete
Fiber-reinforced concrete or fibre-reinforced concrete (FRC) is concrete containing fibrous material which increases its structural integrity. It contains short discrete fibers that are uniformly distributed and randomly oriented. Fibers include steel fibers, glass fibers, synthetic fibers and natural fibers – each of which lend varying properties to the concrete. In addition, the character of fiber-reinforced concrete changes with varying concretes, fiber materials, geometries, distribution, orientation, and densities. Historical perspective The concept of using fibers as reinforcement is not new. Fibers have been used as reinforcement since ancient times. Historically, horsehair was used in mortar and straw in mudbricks. In the 1900s, asbestos fibers were used in concrete. In the 1950s, the concept of composite materials came into being and fiber-reinforced concrete was one of the topics of interest. Once the health risks associated with asbestos were discovered, there ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Micromechanics
Micromechanics (or, more precisely, micromechanics of materials) is the analysis of composite or heterogeneous materials on the level of the individual constituents that constitute these materials. Aims of micromechanics of materials Heterogeneous materials, such as composites, solid foams, polycrystals, or bone, consist of clearly distinguishable constituents (or ''phases'') that show different mechanical and physical material properties. While the constituents can often be modeled as having isotropic behaviour, the microstructure characteristics (shape, orientation, varying volume fraction, ..) of heterogeneous materials often leads to an anisotropic behaviour. Anisotropic material models are available for linear elasticity. In the nonlinear regime, the modeling is often restricted to orthotropic material models which does not capture the physics for all heterogeneous materials. Micromechanics goal is to predict the anisotropic response of the heterogeneous material on the b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]