Higgs Factory
A Higgs Factory is a particle accelerator designed to produce Higgs Bosons at a very high rate, allowing precision studies of this particle. A Higgs factory was identified as the highest future priority of particle physics in the 2020 European Strategy Report. This view was reaffirmed in 2022 by the International Committee on Future Accelerators. The Higgs Boson, discovered in 2012, was the final missing particle of the Standard Model of particle physics. However, unexplained phenomena, such as dark matter lead physicists to think that the Standard Model is an incomplete theory and that new particles may exist. Physicists can search for evidence of new particles in two ways. The first is through direct production, which requires sufficient energy, high production rate, and sensitive detector design. Alternatively, the search can focus on careful measurements of properties of known particles, like the Higgs, that may be affected by interactions with the new particles that ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Particle Accelerator
A particle accelerator is a machine that uses electromagnetic fields to propel charged particles to very high speeds and energies, and to contain them in well-defined beams. Large accelerators are used for fundamental research in particle physics. The largest accelerator currently active is the Large Hadron Collider (LHC) near Geneva, Switzerland, operated by the CERN. It is a collider accelerator, which can accelerate two beams of protons to an energy of 6.5 TeV and cause them to collide head-on, creating center-of-mass energies of 13 TeV. Other powerful accelerators are, RHIC at Brookhaven National Laboratory in New York and, formerly, the Tevatron at Fermilab, Batavia, Illinois. Accelerators are also used as synchrotron light sources for the study of condensed matter physics. Smaller particle accelerators are used in a wide variety of applications, including particle therapy for oncological purposes, radioisotope production for medical diagnostics, ion imp ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Higgs Boson
The Higgs boson, sometimes called the Higgs particle, is an elementary particle in the Standard Model of particle physics produced by the quantum excitation of the Higgs field, one of the fields in particle physics theory. In the Standard Model, the Higgs particle is a massive scalar boson with zero spin, even (positive) parity, no electric charge, and no colour charge, that couples to (interacts with) mass. It is also very unstable, decaying into other particles almost immediately. The Higgs field is a scalar field, with two neutral and two electrically charged components that form a complex doublet of the weak isospin SU(2) symmetry. Its " Mexican hat-shaped" potential leads it to take a nonzero value ''everywhere'' (including otherwise empty space), which breaks the weak isospin symmetry of the electroweak interaction, and via the Higgs mechanism gives mass to many particles. Both the field and the boson are named after physicist Peter Higgs, who in 19 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Standard Model
The Standard Model of particle physics is the theory describing three of the four known fundamental forces ( electromagnetic, weak and strong interactions - excluding gravity) in the universe and classifying all known elementary particles. It was developed in stages throughout the latter half of the 20th century, through the work of many scientists worldwide, with the current formulation being finalized in the mid-1970s upon experimental confirmation of the existence of quarks. Since then, proof of the top quark (1995), the tau neutrino (2000), and the Higgs boson (2012) have added further credence to the Standard Model. In addition, the Standard Model has predicted various properties of weak neutral currents and the W and Z bosons with great accuracy. Although the Standard Model is believed to be theoretically self-consistent and has demonstrated huge successes in providing experimental predictions, it leaves some phenomena unexplained. It falls short of being a complet ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dark Matter
Dark matter is a hypothetical form of matter thought to account for approximately 85% of the matter in the universe. Dark matter is called "dark" because it does not appear to interact with the electromagnetic field, which means it does not absorb, reflect, or emit electromagnetic radiation and is, therefore, difficult to detect. Various astrophysical observationsincluding gravitational effects which cannot be explained by currently accepted theories of gravity unless more matter is present than can be seenimply dark matter's presence. For this reason, most experts think that dark matter is abundant in the universe and has had a strong influence on its structure and evolution. The primary evidence for dark matter comes from calculations showing that many galaxies would behave quite differently if they did not contain a large amount of unseen matter. Some galaxies would not have formed at all and others would not move as they currently do. Other lines of evidence include obs ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Linear Particle Accelerator
A linear particle accelerator (often shortened to linac) is a type of particle accelerator that accelerates charged subatomic particles or ions to a high speed by subjecting them to a series of oscillating electric potentials along a linear beamline. The principles for such machines were proposed by Gustav Ising in 1924, while the first machine that worked was constructed by Rolf Widerøe in 1928 at the RWTH Aachen University. Linacs have many applications: they generate X-rays and high energy electrons for medicinal purposes in radiation therapy, serve as particle injectors for higher-energy accelerators, and are used directly to achieve the highest kinetic energy for light particles (electrons and positrons) for particle physics. The design of a linac depends on the type of particle that is being accelerated: electrons, protons or ions. Linacs range in size from a cathode ray tube (which is a type of linac) to the linac at the SLAC National Accelerator Laboratory in Menlo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
International Linear Collider
The International Linear Collider (ILC) is a proposed linear particle accelerator. It is planned to have a collision energy of 500 GeV initially, with the possibility for a later upgrade to 1000 GeV (1 TeV). Although early proposed locations for the ILC were Japan, Europe (CERN) and the USA (Fermilab), the Kitakami highland in the Iwate prefecture of northern Japan has been the focus of ILC design efforts since 2013. The Japanese government is willing to contribute half of the costs, according to the coordinator of study for detectors at the ILC. The ILC would collide electrons with positrons. It will be between 30 km and 50 km (19–31 mi) long, more than 10 times as long as the 50 GeV Stanford Linear Accelerator, the longest existing linear particle accelerator. The proposal is based on previous similar proposals from Europe, the U.S., and Japan. In a staged approach, the ILC could initially be constructed at 250 GeV, for use as a Higgs factory ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Compact Linear Collider
The Compact Linear Collider (CLIC) is a concept for a future linear particle accelerator that aims to explore the next energy frontier. CLIC would collide electrons with positrons and is currently the only mature option for a multi-TeV linear collider. The accelerator would be between long, more than ten times longer than the existing Stanford Linear Accelerator (SLAC) in California, USA. CLIC is proposed to be built at CERN, across the border between France and Switzerland near Geneva, with first beams starting by the time the Large Hadron Collider (LHC) has finished operations around 2035. The CLIC accelerator would use a novel two-beam acceleration technique at an acceleration gradient of 100 M V/m, and its staged construction would provide collisions at three centre-of-mass energies up to 3 TeV for optimal physics reach. Research and development (R&D) are being carried out to achieve the high precision physics goals under challenging beam and background conditions. CL ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
CERN
The European Organization for Nuclear Research, known as CERN (; ; ), is an intergovernmental organization that operates the largest particle physics laboratory in the world. Established in 1954, it is based in a northwestern suburb of Geneva, on the France–Switzerland border. It comprises 23 member states, and Israel (admitted in 2013) is currently the only non-European country holding full membership. CERN is an official United Nations General Assembly observer. The acronym CERN is also used to refer to the laboratory; in 2019, it had 2,660 scientific, technical, and administrative staff members, and hosted about 12,400 users from institutions in more than 70 countries. In 2016, CERN generated 49 petabytes of data. CERN's main function is to provide the particle accelerators and other infrastructure needed for high-energy physics research — consequently, numerous experiments have been constructed at CERN through international collaborations. CERN is the site of th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Future Circular Collider
The Future Circular Collider (FCC) is a proposed particle accelerator with an energy significantly above that of previous circular colliders, such as the Super Proton Synchrotron, the Tevatron, and the Large Hadron Collider (LHC). The FCC project is considering three scenarios for collision types: FCC-hh, for hadron-hadron collisions, including proton-proton and heavy ion collisions, FCC-ee, for electron- positron collisions, and FCC-eh, for electron-hadron collisions. In FCC-hh, each beam would have a total energy of 560 MJ. With a centre-of-mass collision energy of 100 TeV (vs 14 TeV at LHC) the total energy value increases to 16.7 GJ. These total energy values exceed the present LHC by nearly a factor of 30.https://cds.cern.ch/record/2651300/files/CERN-ACC-2018-0058.pdf pg. 248, Beam Parameters gives GJ of total energy based on number of protons per bunch and number of bunches 0,400in FCC-hh: https://www.wolframalpha.com/input/?i=10400*1.0*(10%5E11)*100*(10%5E12)*1.602*(1 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Circular Electron Positron Collider
The Circular Electron Positron Collider (CEPC) is a proposed Chinese electron positron collider for experimenting on the Higgs boson. It would be the world's largest particle accelerator with a circumference of . CEPC was proposed by the Chinese Academy of Sciences' Institute of High Energy Physics in 2012. Projections in 2023 were for a proposal to be submitted to the government in 2025, and construction taking place from 2027 to 2035; the projected cost was , including experiments. The design was produced by a team of international physicists. The technical design report was released in December 2023. Description CEPC is projected to have a maximum center-of-mass energy of 240 GeV. It will be located underground, and have two detectors. The electron-positron collisions will allow clearer observations than the proton-proton collisions of the Large Hadron Collider (LHC). After 2040, the collider could be upgraded into the Super Proton-Proton Collider with collision energies s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
B-factory
In particle physics, a B-factory, or sometimes a beauty factory, is a particle collider experiment designed to produce and detect a large number of B mesons so that their properties and behavior can be measured with small statistical uncertainty. Tau leptons and D mesons are also copiously produced at B-factories. History and development A sort of "prototype" or "precursor" B-factory was the HERA-B experiment at DESY that was planned to study B-meson physics in the 1990–2000s, before the actual B-factories were constructed/operational. However, usually HERA-B is not considered a B-factory. Two B-factories were designed and built in the 1990s, and they operated from late 1999 onward: the Belle experiment at the KEKB collider in Tsukuba, Japan, and the BaBar experiment at the PEP-II collider at SLAC in California, United States. They were both electron-positron colliders with the center of mass energy tuned to the ϒ(4S) resonance peak, which is just above the threshold for deca ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Neutrino Factory
The Neutrino Factory is a proposed particle accelerator complex intended to measure in detail the properties of neutrinos, which are extremely weakly interacting fundamental particles that can travel in straight lines through normal matter for thousands of kilometres. Up until the 1990s, neutrinos were assumed to be massless, but experimental results from searches for solar neutrinos (those produced in the Sun's core) and others are inconsistent with this assumption, and thus indicate that the neutrino does have a very small mass (see Solar neutrino problem). Function The Neutrino Factory will create a fairly focused beam of neutrinos at one site on the Earth and fire it downwards, probably in two beams emitted in different directions from a racetrack shaped underground muon storage ring, until the beams resurface at other points. One example could be a complex in the UK sending beams to Japan (see Super-Kamiokande) and Italy (LNGS). The properties of the neutrinos will be examine ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |