HOME
*





Hasse–Arf Theorem
In mathematics, specifically in local class field theory, the Hasse–Arf theorem is a result concerning jumps of the upper numbering filtration of the Galois group of a finite Galois extension. A special case of it when the residue fields are finite was originally proved by Helmut Hasse, and the general result was proved by Cahit Arf. Statement Higher ramification groups The theorem deals with the upper numbered higher ramification groups of a finite abelian extension ''L''/''K''. So assume ''L''/''K'' is a finite Galois extension, and that ''v''''K'' is a discrete normalised valuation of ''K'', whose residue field has characteristic ''p'' > 0, and which admits a unique extension to ''L'', say ''w''. Denote by ''v''''L'' the associated normalised valuation ''ew'' of ''L'' and let \scriptstyle be the valuation ring of ''L'' under ''v''''L''. Let ''L''/''K'' have Galois group ''G'' and define the ''s''-th ramification group of ''L''/''K'' for any real ''s''  ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Local Class Field Theory
In mathematics, local class field theory, introduced by Helmut Hasse, is the study of abelian extensions of local fields; here, "local field" means a field which is complete with respect to an absolute value or a discrete valuation with a finite residue field: hence every local field is isomorphic (as a topological field) to the real numbers R, the complex numbers C, a finite extension of the ''p''-adic numbers Q''p'' (where ''p'' is any prime number), or a finite extension of the field of formal Laurent series F''q''((''T'')) over a finite field F''q''. Approaches to local class field theory Local class field theory gives a description of the Galois group ''G'' of the maximal abelian extension of a local field ''K'' via the reciprocity map which acts from the multiplicative group ''K''×=''K''\. For a finite abelian extension ''L'' of ''K'' the reciprocity map induces an isomorphism of the quotient group ''K''×/''N''(''L''×) of ''K''× by the norm group ''N'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Upper Numbering
In number theory, more specifically in local class field theory, the ramification groups are a filtration of the Galois group of a local field extension, which gives detailed information on the ramification phenomena of the extension. Ramification theory of valuations In mathematics, the ramification theory of valuations studies the set of extensions of a valuation ''v'' of a field ''K'' to an extension ''L'' of ''K''. It is a generalization of the ramification theory of Dedekind domains. The structure of the set of extensions is known better when ''L''/''K'' is Galois. Decomposition group and inertia group Let (''K'', ''v'') be a valued field and let ''L'' be a finite Galois extension of ''K''. Let ''Sv'' be the set of equivalence classes of extensions of ''v'' to ''L'' and let ''G'' be the Galois group of ''L'' over ''K''. Then ''G'' acts on ''Sv'' by σ 'w''nbsp;=  'w'' ∘ σ(i.e. ''w'' is a representative of the equivalence class 'w''nbsp;∈  ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Galois Group
In mathematics, in the area of abstract algebra known as Galois theory, the Galois group of a certain type of field extension is a specific group associated with the field extension. The study of field extensions and their relationship to the polynomials that give rise to them via Galois groups is called Galois theory, so named in honor of Évariste Galois who first discovered them. For a more elementary discussion of Galois groups in terms of permutation groups, see the article on Galois theory. Definition Suppose that E is an extension of the field F (written as E/F and read "''E'' over ''F'' "). An automorphism of E/F is defined to be an automorphism of E that fixes F pointwise. In other words, an automorphism of E/F is an isomorphism \alpha:E\to E such that \alpha(x) = x for each x\in F. The set of all automorphisms of E/F forms a group with the operation of function composition. This group is sometimes denoted by \operatorname(E/F). If E/F is a Galois extension, the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Galois Extension
In mathematics, a Galois extension is an algebraic field extension ''E''/''F'' that is normal and separable; or equivalently, ''E''/''F'' is algebraic, and the field fixed by the automorphism group Aut(''E''/''F'') is precisely the base field ''F''. The significance of being a Galois extension is that the extension has a Galois group and obeys the fundamental theorem of Galois theory. A result of Emil Artin allows one to construct Galois extensions as follows: If ''E'' is a given field, and ''G'' is a finite group of automorphisms of ''E'' with fixed field ''F'', then ''E''/''F'' is a Galois extension. Characterization of Galois extensions An important theorem of Emil Artin states that for a finite extension E/F, each of the following statements is equivalent to the statement that E/F is Galois: *E/F is a normal extension and a separable extension. *E is a splitting field of a separable polynomial with coefficients in F. *, \!\operatorname(E/F), = :F that is, the number o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Helmut Hasse
Helmut Hasse (; 25 August 1898 – 26 December 1979) was a German mathematician working in algebraic number theory, known for fundamental contributions to class field theory, the application of ''p''-adic numbers to local class field theory and diophantine geometry (Hasse principle), and to local zeta functions. Life Hasse was born in Kassel, Province of Hesse-Nassau, the son of Judge Paul Reinhard Hasse, also written Haße (12 April 1868 – 1 June 1940, son of Friedrich Ernst Hasse and his wife Anna Von Reinhard) and his wife Margarethe Louise Adolphine Quentin (born 5 July 1872 in Milwaukee, daughter of retail toy merchant Adolph Quentin (b. May 1832, probably Berlin, Kingdom of Prussia) and Margarethe Wehr (b. about 1840, Prussia), then raised in Kassel). After serving in the Imperial German Navy in World War I, he studied at the University of Göttingen, and then at the University of Marburg under Kurt Hensel, writing a dissertation in 1921 containing the Hasse–Minkowsk ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cahit Arf
Cahit Arf (; 24 October 1910 – 26 December 1997) was a Turkish mathematician. He is known for the Arf invariant of a quadratic form in characteristic 2 (applied in knot theory and surgery theory) in topology, the Hasse–Arf theorem in ramification theory, Arf semigroups and Arf rings. Biography Cahit Arf was born on 11 October 1910 in Selanik (Thessaloniki), which was then a part of the Ottoman Empire. His family migrated to Istanbul with the outbreak of the Balkan War in 1912. The family finally settled in İzmir where Cahit Arf received his primary education. Upon receiving a scholarship from the Turkish Ministry of Education he continued his education in Paris and graduated from École Normale Supérieure. Returning to Turkey, he taught mathematics at Galatasaray High School. In 1933 he joined the Mathematics Department of Istanbul University. In 1937 he went to Göttingen, where he received his PhD from the University of Göttingen and he worked with Helmut Has ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Abelian Extension
In abstract algebra, an abelian extension is a Galois extension whose Galois group is abelian. When the Galois group is also cyclic, the extension is also called a cyclic extension. Going in the other direction, a Galois extension is called solvable if its Galois group is solvable, i.e., if the group can be decomposed into a series of normal extensions of an abelian group. Every finite extension of a finite field is a cyclic extension. Class field theory provides detailed information about the abelian extensions of number fields, function fields of algebraic curves over finite fields, and local fields. There are two slightly different definitions of the term cyclotomic extension. It can mean either an extension formed by adjoining roots of unity to a field, or a subextension of such an extension. The cyclotomic fields are examples. A cyclotomic extension, under either definition, is always abelian. If a field ''K'' contains a primitive ''n''-th root of unity and the ''n''-th ro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Discrete Valuation
In mathematics, a discrete valuation is an integer valuation on a field ''K''; that is, a function: :\nu:K\to\mathbb Z\cup\ satisfying the conditions: :\nu(x\cdot y)=\nu(x)+\nu(y) :\nu(x+y)\geq\min\big\ :\nu(x)=\infty\iff x=0 for all x,y\in K. Note that often the trivial valuation which takes on only the values 0,\infty is explicitly excluded. A field with a non-trivial discrete valuation is called a discrete valuation field. Discrete valuation rings and valuations on fields To every field K with discrete valuation \nu we can associate the subring ::\mathcal_K := \left\ of K, which is a discrete valuation ring. Conversely, the valuation \nu: A \rightarrow \Z\cup\ on a discrete valuation ring A can be extended in a unique way to a discrete valuation on the quotient field K=\text(A); the associated discrete valuation ring \mathcal_K is just A. Examples * For a fixed prime p and for any element x \in \mathbb different from zero write x = p^j\frac with j, a,b \in \Z such that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Valuation Ring
In abstract algebra, a valuation ring is an integral domain ''D'' such that for every element ''x'' of its field of fractions ''F'', at least one of ''x'' or ''x''−1 belongs to ''D''. Given a field ''F'', if ''D'' is a subring of ''F'' such that either ''x'' or ''x''−1 belongs to ''D'' for every nonzero ''x'' in ''F'', then ''D'' is said to be a valuation ring for the field ''F'' or a place of ''F''. Since ''F'' in this case is indeed the field of fractions of ''D'', a valuation ring for a field is a valuation ring. Another way to characterize the valuation rings of a field ''F'' is that valuation rings ''D'' of ''F'' have ''F'' as their field of fractions, and their ideals are totally ordered by inclusion; or equivalently their principal ideals are totally ordered by inclusion. In particular, every valuation ring is a local ring. The valuation rings of a field are the maximal elements of the set of the local subrings in the field partially ordered by dominance or refin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ramification Group
In number theory, more specifically in local class field theory, the ramification groups are a filtration of the Galois group of a local field extension, which gives detailed information on the ramification phenomena of the extension. Ramification theory of valuations In mathematics, the ramification theory of valuations studies the set of extensions of a valuation ''v'' of a field ''K'' to an extension ''L'' of ''K''. It is a generalization of the ramification theory of Dedekind domains. The structure of the set of extensions is known better when ''L''/''K'' is Galois. Decomposition group and inertia group Let (''K'', ''v'') be a valued field and let ''L'' be a finite Galois extension of ''K''. Let ''Sv'' be the set of equivalence classes of extensions of ''v'' to ''L'' and let ''G'' be the Galois group of ''L'' over ''K''. Then ''G'' acts on ''Sv'' by σ 'w''nbsp;=  'w'' ∘ σ(i.e. ''w'' is a representative of the equivalence class 'w''nbsp;∈&nb ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Integer
An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign (−1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language of mathematics, the set of integers is often denoted by the boldface or blackboard bold \mathbb. The set of natural numbers \mathbb is a subset of \mathbb, which in turn is a subset of the set of all rational numbers \mathbb, itself a subset of the real numbers \mathbb. Like the natural numbers, \mathbb is countably infinite. An integer may be regarded as a real number that can be written without a fractional component. For example, 21, 4, 0, and −2048 are integers, while 9.75, , and  are not. The integers form the smallest group and the smallest ring containing the natural numbers. In algebraic number theory, the integers are sometimes qualified as rational integers to distinguish them from the more general algebraic integers ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]