Hartogs Number
In mathematics, specifically in axiomatic set theory, a Hartogs number is an ordinal number associated with a set. In particular, if ''X'' is any set, then the Hartogs number of ''X'' is the least ordinal α such that there is no injection from α into ''X''. If ''X'' can be well-ordered then the cardinal number of α is a minimal cardinal greater than that of ''X''. If ''X'' cannot be well-ordered then there cannot be an injection from ''X'' to α. However, the cardinal number of α is still a minimal cardinal number (i.e. ordinal) ''not less than or equal to'' the cardinality of ''X'' (with the bijection definition of cardinality and the injective function order). (If we restrict to cardinal numbers of well-orderable sets then that of α is the smallest that is not not less than or equal to that of ''X''.) The map taking ''X'' to α is sometimes called Hartogs's function. This mapping is used to construct the aleph numbers, which are all the cardinal numbers of infinite well-o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Power Set
In mathematics, the power set (or powerset) of a set is the set of all subsets of , including the empty set and itself. In axiomatic set theory (as developed, for example, in the ZFC axioms), the existence of the power set of any set is postulated by the axiom of power set. The powerset of is variously denoted as , , , \mathbb(S), or . Any subset of is called a ''family of sets'' over . Example If is the set , then all the subsets of are * (also denoted \varnothing or \empty, the empty set or the null set) * * * * * * * and hence the power set of is . Properties If is a finite set with the cardinality (i.e., the number of all elements in the set is ), then the number of all the subsets of is . This fact as well as the reason of the notation denoting the power set are demonstrated in the below. : An indicator function or a characteristic function of a subset of a set with the cardinality is a function from to the two-element set , denoted as , ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematische Annalen
''Mathematische Annalen'' (abbreviated as ''Math. Ann.'' or, formerly, ''Math. Annal.'') is a German mathematical research journal founded in 1868 by Alfred Clebsch and Carl Neumann. Subsequent managing editors were Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück, Nigel Hitchin, and Thomas Schick. Currently, the managing editor of Mathematische Annalen is Yoshikazu Giga (University of Tokyo). Volumes 1–80 (1869–1919) were published by Teubner. Since 1920 (vol. 81), the journal has been published by Springer. In the late 1920s, under the editorship of Hilbert, the journal became embroiled in controversy over the participation of L. E. J. Brouwer on its editorial board, a spillover from the foundational Brouwer–Hilbert controversy. Between 1945 and 1947, the journal briefly ceased publication. References External links''Mathematische Annalen''homepage a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Chapman & Hall
Chapman & Hall is an imprint owned by CRC Press, originally founded as a British publishing house in London in the first half of the 19th century by Edward Chapman and William Hall. Chapman & Hall were publishers for Charles Dickens (from 1840 until 1844 and again from 1858 until 1870), Thomas Carlyle, William Thackeray, Elizabeth Barrett Browning, Anthony Trollope, Eadweard Muybridge and Evelyn Waugh. History Upon Hall's death in 1847, Chapman's cousin Frederic Chapman began his progress through the ranks of the company and eventually becoming a partner in 1858 and sole proprietor on Edward Chapman's retirement from Chapman & Hall in 1866. In 1868 author Anthony Trollope bought a third of the company for his son, Henry Merivale Trollope. From 1902 to 1930 the company's managing director was Arthur Waugh. In the 1930s the company merged with Methuen & Co. Ltd., Methuen, a merger which, in 1955, participated in forming the Associated Book Publishers. The latter was acquire ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Aleph Number
In mathematics, particularly in set theory, the aleph numbers are a sequence of numbers used to represent the cardinality (or size) of infinite sets. They were introduced by the mathematician Georg Cantor and are named after the symbol he used to denote them, the Hebrew letter aleph (ℵ). The smallest cardinality of an infinite set is that of the natural numbers, denoted by \aleph_0 (read ''aleph-nought'', ''aleph-zero'', or ''aleph-null''); the next larger cardinality of a well-ordered set is \aleph_1, then \aleph_2, then \aleph_3, and so on. Continuing in this manner, it is possible to define an infinite cardinal number \aleph_ for every ordinal number \alpha, as described below. The concept and notation are due to Georg Cantor, who defined the notion of cardinality and realized that infinite sets can have different cardinalities. The aleph numbers differ from the infinity (\infty) commonly found in algebra and calculus, in that the alephs measure the sizes of sets, while ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Successor Cardinal
In set theory, one can define a successor operation on cardinal numbers in a similar way to the successor operation on the ordinal numbers. The cardinal successor coincides with the ordinal successor for finite cardinals, but in the infinite case they diverge because every infinite ordinal and its successor have the same cardinality (a bijection can be set up between the two by simply sending the last element of the successor to 0, 0 to 1, etc., and fixing ω and all the elements above; in the style of Hilbert's Hotel Infinity). Using the von Neumann cardinal assignment and the axiom of choice (AC), this successor operation is easy to define: for a cardinal number ''κ'' we have :\kappa^+ = \left, \inf \\ , where ON is the class of ordinals. That is, the successor cardinal is the cardinality of the least ordinal into which a set of the given cardinality can be mapped one-to-one, but which cannot be mapped one-to-one back into that set. That the set above is nonempty follows from ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Well-ordering Theorem
In mathematics, the well-ordering theorem, also known as Zermelo's theorem, states that every set can be well-ordered. A set ''X'' is ''well-ordered'' by a strict total order if every non-empty subset of ''X'' has a least element under the ordering. The well-ordering theorem together with Zorn's lemma are the most important mathematical statements that are equivalent to the axiom of choice (often called AC, see also ). Ernst Zermelo introduced the axiom of choice as an "unobjectionable logical principle" to prove the well-ordering theorem. One can conclude from the well-ordering theorem that every set is susceptible to transfinite induction, which is considered by mathematicians to be a powerful technique. One famous consequence of the theorem is the Banach–Tarski paradox. History Georg Cantor considered the well-ordering theorem to be a "fundamental principle of thought". However, it is considered difficult or even impossible to visualize a well-ordering of \mathbb, the set o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Order Isomorphism
In the mathematical field of order theory, an order isomorphism is a special kind of monotone function that constitutes a suitable notion of isomorphism for partially ordered sets (posets). Whenever two posets are order isomorphic, they can be considered to be "essentially the same" in the sense that either of the orders can be obtained from the other just by renaming of elements. Two strictly weaker notions that relate to order isomorphisms are order embeddings and Galois connections. The idea of isomorphism can be understood for finite orders in terms of Hasse diagrams. Two finite orders are isomorphic exactly when a single Hasse diagram ( up to relabeling of its elements) expresses them both, in other words when every Hasse diagram of either can be converted to a Hasse diagram of the other by simply relabeling the vertices. Definition Formally, given two posets (S,\le_S) and (T,\le_T), an order isomorphism from (S,\le_S) to (T,\le_T) is a bijective function f from S to T ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Replacement Axiom
In set theory, the axiom schema of replacement is a schema of axioms in Zermelo–Fraenkel set theory (ZF) that asserts that the image of any set under any definable mapping is also a set. It is necessary for the construction of certain infinite sets in ZF. The axiom schema is motivated by the idea that whether a class is a set depends only on the cardinality of the class, not on the rank of its elements. Thus, if one class is "small enough" to be a set, and there is a surjection from that class to a second class, the axiom states that the second class is also a set. However, because ZFC only speaks of sets, not proper classes, the schema is stated only for definable surjections, which are identified with their defining formulas. Statement Suppose P is a definable binary relation (which may be a proper class) such that for every set x there is a unique set y such that P(x,y) holds. There is a corresponding definable function F_P, where F_P(x)=y if and only if P(x,y). Conside ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ordinal Number
In set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals (first, second, th, etc.) aimed to extend enumeration to infinite sets. A finite set can be enumerated by successively labeling each element with the least natural number that has not been previously used. To extend this process to various infinite sets, ordinal numbers are defined more generally using linearly ordered greek letter variables that include the natural numbers and have the property that every set of ordinals has a least or "smallest" element (this is needed for giving a meaning to "the least unused element"). This more general definition allows us to define an ordinal number \omega (omega) to be the least element that is greater than every natural number, along with ordinal numbers , , etc., which are even greater than . A linear order such that every non-empty subset has a least element is called a well-order. The axiom of choice implies that every set can be well-orde ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Transitive Set
In set theory, a branch of mathematics, a set A is called transitive if either of the following equivalent conditions holds: * whenever x \in A, and y \in x, then y \in A. * whenever x \in A, and x is not an urelement, then x is a subset of A. Similarly, a class M is transitive if every element of M is a subset of M. Examples Using the definition of ordinal numbers suggested by John von Neumann, ordinal numbers are defined as hereditarily transitive sets: an ordinal number is a transitive set whose members are also transitive (and thus ordinals). The class of all ordinals is a transitive class. Any of the stages V_\alpha and L_\alpha leading to the construction of the von Neumann universe V and Gödel's constructible universe L are transitive sets. The universes V and L themselves are transitive classes. This is a complete list of all finite transitive sets with up to 20 brackets: * \, * \, * \, * \, * \, * \, * \, * \, * \, * \, * \, * \, * \, * \, * \, * \, * \, * \, * \ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Axiom Schema Of Replacement
In set theory, the axiom schema of replacement is a Axiom schema, schema of axioms in Zermelo–Fraenkel set theory (ZF) that asserts that the image (mathematics), image of any Set (mathematics), set under any definable functional predicate, mapping is also a set. It is necessary for the construction of certain infinite sets in ZF. The axiom schema is motivated by the idea that whether a class (set theory), class is a set depends only on the cardinality of the class, not on the rank (set theory), rank of its elements. Thus, if one class is "small enough" to be a set, and there is a surjection from that class to a second class, the axiom states that the second class is also a set. However, because ZFC only speaks of sets, not proper classes, the schema is stated only for definable surjections, which are identified with their defining Well-formed formula, formulas. Statement Suppose P is a definable binary relation (mathematics), relation (which may be a proper class) such that f ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |