Harish-Chandra Character
   HOME
*





Harish-Chandra Character
In mathematics, the Harish-Chandra character, named after Harish-Chandra, of a representation of a semisimple Lie group ''G'' on a Hilbert space ''H'' is a distribution on the group ''G'' that is analogous to the character of a finite-dimensional representation of a compact group. Definition Suppose that π is an irreducible unitary representation of ''G'' on a Hilbert space ''H''. If ''f'' is a compactly supported smooth function on the group ''G'', then the operator on ''H'' :\pi(f) = \int_Gf(x)\pi(x)\,dx is of trace class, and the distribution :\Theta_\pi:f\mapsto \operatorname(\pi(f)) is called the character (or global character or Harish-Chandra character) of the representation. The character Θπ is a distribution on ''G'' that is invariant under conjugation, and is an eigendistribution of the center of the universal enveloping algebra of ''G'', in other words an invariant eigendistribution, with eigenvalue the infinitesimal character of the representation π. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Harish-Chandra
Harish-Chandra Fellow of the Royal Society, FRS (11 October 1923 – 16 October 1983) was an Indian American mathematician and physicist who did fundamental work in representation theory, especially harmonic analysis on semisimple Lie groups. Early life Harish-Chandra was born in Kanpur. He was educated at BNSD Inter College, B.N.S.D. College, Kanpur and at the University of Allahabad. After receiving his master's degree in Physics in 1943, he moved to the Indian Institute of Science, Bangalore for further studies under Homi J. Bhabha. In 1945, he moved to University of Cambridge, and worked as a research student under Paul Dirac. While at Cambridge, he attended lectures by Wolfgang Pauli, and during one of them pointed out a mistake in Pauli's work. The two were to become lifelong friends. During this time he became increasingly interested in mathematics. At Cambridge he obtained his PhD in 1947. Honors and awards He was a member of the United States National Academy of Scie ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Semisimple Lie Group
In mathematics, a Lie algebra is semisimple if it is a direct sum of modules, direct sum of simple Lie algebras. (A simple Lie algebra is a non-abelian Lie algebra without any non-zero proper Lie algebra#Subalgebras.2C ideals and homomorphisms, ideals). Throughout the article, unless otherwise stated, a Lie algebra is a finite-dimensional Lie algebra over a field of Characteristic (algebra), characteristic 0. For such a Lie algebra \mathfrak g, if nonzero, the following conditions are equivalent: *\mathfrak g is semisimple; *the Killing form, κ(x,y) = tr(ad(''x'')ad(''y'')), is non-degenerate; *\mathfrak g has no non-zero abelian ideals; *\mathfrak g has no non-zero solvable Lie algebra, solvable ideals; * the Radical of a Lie algebra, radical (maximal solvable ideal) of \mathfrak g is zero. Significance The significance of semisimplicity comes firstly from the Levi decomposition, which states that every finite dimensional Lie algebra is the semidirect product of a solvable i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hilbert Space
In mathematics, Hilbert spaces (named after David Hilbert) allow generalizing the methods of linear algebra and calculus from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise naturally and frequently in mathematics and physics, typically as function spaces. Formally, a Hilbert space is a vector space equipped with an inner product that defines a distance function for which the space is a complete metric space. The earliest Hilbert spaces were studied from this point of view in the first decade of the 20th century by David Hilbert, Erhard Schmidt, and Frigyes Riesz. They are indispensable tools in the theories of partial differential equations, quantum mechanics, Fourier analysis (which includes applications to signal processing and heat transfer), and ergodic theory (which forms the mathematical underpinning of thermodynamics). John von Neumann coined the term ''Hilbert space'' for the abstract concept that under ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Distribution (mathematics)
Distributions, also known as Schwartz distributions or generalized functions, are objects that generalize the classical notion of functions in mathematical analysis. Distributions make it possible to differentiate functions whose derivatives do not exist in the classical sense. In particular, any locally integrable function has a distributional derivative. Distributions are widely used in the theory of partial differential equations, where it may be easier to establish the existence of distributional solutions than classical solutions, or where appropriate classical solutions may not exist. Distributions are also important in physics and engineering where many problems naturally lead to differential equations whose solutions or initial conditions are singular, such as the Dirac delta function. A function f is normally thought of as on the in the function domain by "sending" a point x in its domain to the point f(x). Instead of acting on points, distribution theory reinterpr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Compact Group
In mathematics, a compact (topological) group is a topological group whose topology realizes it as a compact topological space (when an element of the group is operated on, the result is also within the group). Compact groups are a natural generalization of finite groups with the discrete topology and have properties that carry over in significant fashion. Compact groups have a well-understood theory, in relation to group actions and representation theory. In the following we will assume all groups are Hausdorff spaces. Compact Lie groups Lie groups form a class of topological groups, and the compact Lie groups have a particularly well-developed theory. Basic examples of compact Lie groups include * the circle group T and the torus groups T''n'', * the orthogonal group O(''n''), the special orthogonal group SO(''n'') and its covering spin group Spin(''n''), * the unitary group U(''n'') and the special unitary group SU(''n''), * the compact forms of the exceptional Lie gr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Unitary Representation
In mathematics, a unitary representation of a group ''G'' is a linear representation π of ''G'' on a complex Hilbert space ''V'' such that π(''g'') is a unitary operator for every ''g'' ∈ ''G''. The general theory is well-developed in case ''G'' is a locally compact ( Hausdorff) topological group and the representations are strongly continuous. The theory has been widely applied in quantum mechanics since the 1920s, particularly influenced by Hermann Weyl's 1928 book ''Gruppentheorie und Quantenmechanik''. One of the pioneers in constructing a general theory of unitary representations, for any group ''G'' rather than just for particular groups useful in applications, was George Mackey. Context in harmonic analysis The theory of unitary representations of topological groups is closely connected with harmonic analysis. In the case of an abelian group ''G'', a fairly complete picture of the representation theory of ''G'' is given by Pontryagin duality. In general, the unitary equ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Compactly Supported
In mathematics, the support of a real-valued function f is the subset of the function domain containing the elements which are not mapped to zero. If the domain of f is a topological space, then the support of f is instead defined as the smallest closed set containing all points not mapped to zero. This concept is used very widely in mathematical analysis. Formulation Suppose that f : X \to \R is a real-valued function whose domain is an arbitrary set X. The of f, written \operatorname(f), is the set of points in X where f is non-zero: \operatorname(f) = \. The support of f is the smallest subset of X with the property that f is zero on the subset's complement. If f(x) = 0 for all but a finite number of points x \in X, then f is said to have . If the set X has an additional structure (for example, a topology), then the support of f is defined in an analogous way as the smallest subset of X of an appropriate type such that f vanishes in an appropriate sense on its complement. T ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Smooth Function
In mathematical analysis, the smoothness of a function (mathematics), function is a property measured by the number of Continuous function, continuous Derivative (mathematics), derivatives it has over some domain, called ''differentiability class''. At the very minimum, a function could be considered smooth if it is differentiable everywhere (hence continuous). At the other end, it might also possess derivatives of all Order of derivation, orders in its Domain of a function, domain, in which case it is said to be infinitely differentiable and referred to as a C-infinity function (or C^ function). Differentiability classes Differentiability class is a classification of functions according to the properties of their derivatives. It is a measure of the highest order of derivative that exists and is continuous for a function. Consider an open set U on the real line and a function f defined on U with real values. Let ''k'' be a non-negative integer. The function f is said to be of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Trace Class
In mathematics, specifically functional analysis, a trace-class operator is a linear operator for which a Trace (linear algebra), trace may be defined, such that the trace is a finite number independent of the choice of basis used to compute the trace. This trace of trace-class operators generalizes the trace of matrices studied in linear algebra. All trace-class operators are Compact operator, compact operators. In quantum mechanics, Mixed state (physics), mixed states are described by Density matrix, density matrices, which are certain trace class operators. Trace-class operators are essentially the same as nuclear operators, though many authors reserve the term "trace-class operator" for the special case of nuclear operators on Hilbert spaces and use the term "nuclear operator" in more general topological vector spaces (such as Banach spaces). Note that the trace operator studied in partial differential equations is an unrelated concept. Definition Suppose H is a Hilbert s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Universal Enveloping Algebra
In mathematics, the universal enveloping algebra of a Lie algebra is the unital associative algebra whose representations correspond precisely to the representations of that Lie algebra. Universal enveloping algebras are used in the representation theory of Lie groups and Lie algebras. For example, Verma modules can be constructed as quotients of the universal enveloping algebra. In addition, the enveloping algebra gives a precise definition for the Casimir operators. Because Casimir operators commute with all elements of a Lie algebra, they can be used to classify representations. The precise definition also allows the importation of Casimir operators into other areas of mathematics, specifically, those that have a differential algebra. They also play a central role in some recent developments in mathematics. In particular, their dual provides a commutative example of the objects studied in non-commutative geometry, the quantum groups. This dual can be shown, by the Gelfand–N ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Infinitesimal Character
In mathematics, the infinitesimal character of an irreducible representation ρ of a semisimple Lie group ''G'' on a vector space ''V'' is, roughly speaking, a mapping to scalars that encodes the process of first differentiating and then diagonalizing the representation. It therefore is a way of extracting something essential from the representation ρ by two successive linearizations. Formulation The infinitesimal character is the linear form on the center ''Z'' of the universal enveloping algebra of the Lie algebra of ''G'' that the representation induces. This construction relies on some extended version of Schur's lemma to show that any ''z'' in ''Z'' acts on ''V'' as a scalar, which by abuse of notation could be written ρ(''z''). In more classical language, ''z'' is a differential operator, constructed from the infinitesimal transformations which are induced on ''V'' by the Lie algebra of ''G''. The effect of Schur's lemma is to force all ''v'' in ''V'' to be simultaneous e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Harish-Chandra's Regularity Theorem
In mathematics, Harish-Chandra's regularity theorem, introduced by , states that every invariant eigendistribution on a semisimple Lie group, and in particular every character of an irreducible unitary representation on a Hilbert space, is given by a locally integrable function. proved a similar theorem for semisimple ''p''-adic groups. had previously shown that any invariant eigendistribution is analytic on the regular elements of the group, by showing that on these elements it is a solution of an elliptic differential equation. The problem is that it may have singularities on the singular elements of the group; the regularity theorem implies that these singularities are not too severe. Statement A distribution on a group ''G'' or its Lie algebra is called invariant if it is invariant under conjugation by ''G''. A distribution on a group ''G'' or its Lie algebra is called an eigendistribution if it is an eigenvector of the center of the universal enveloping algebra of ''G'' (id ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]