HOME

TheInfoList



OR:

In mathematics, the Harish-Chandra character, named after
Harish-Chandra Harish-Chandra Fellow of the Royal Society, FRS (11 October 1923 – 16 October 1983) was an Indian American mathematician and physicist who did fundamental work in representation theory, especially harmonic analysis on semisimple Lie groups. ...
, of a representation of a
semisimple Lie group In mathematics, a Lie algebra is semisimple if it is a direct sum of modules, direct sum of simple Lie algebras. (A simple Lie algebra is a non-abelian Lie algebra without any non-zero proper Lie algebra#Subalgebras.2C ideals and homomorphisms, i ...
''G'' on a
Hilbert space In mathematics, Hilbert spaces (named after David Hilbert) allow generalizing the methods of linear algebra and calculus from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise natural ...
''H'' is a
distribution Distribution may refer to: Mathematics *Distribution (mathematics), generalized functions used to formulate solutions of partial differential equations * Probability distribution, the probability of a particular value or value range of a vari ...
on the group ''G'' that is analogous to the character of a finite-dimensional representation of a
compact group In mathematics, a compact (topological) group is a topological group whose topology realizes it as a compact topological space (when an element of the group is operated on, the result is also within the group). Compact groups are a natural gen ...
.


Definition

Suppose that π is an irreducible
unitary representation In mathematics, a unitary representation of a group ''G'' is a linear representation π of ''G'' on a complex Hilbert space ''V'' such that π(''g'') is a unitary operator for every ''g'' ∈ ''G''. The general theory is well-developed in case ''G'' ...
of ''G'' on a Hilbert space ''H''. If ''f'' is a
compactly supported In mathematics, the support of a real-valued function f is the subset of the function domain containing the elements which are not mapped to zero. If the domain of f is a topological space, then the support of f is instead defined as the smallest ...
smooth function In mathematical analysis, the smoothness of a function (mathematics), function is a property measured by the number of Continuous function, continuous Derivative (mathematics), derivatives it has over some domain, called ''differentiability cl ...
on the group ''G'', then the operator on ''H'' :\pi(f) = \int_Gf(x)\pi(x)\,dx is of
trace class In mathematics, specifically functional analysis, a trace-class operator is a linear operator for which a Trace (linear algebra), trace may be defined, such that the trace is a finite number independent of the choice of basis used to compute the tra ...
, and the distribution :\Theta_\pi:f\mapsto \operatorname(\pi(f)) is called the character (or global character or Harish-Chandra character) of the representation. The character Θπ is a distribution on ''G'' that is invariant under conjugation, and is an eigendistribution of the center of the
universal enveloping algebra In mathematics, the universal enveloping algebra of a Lie algebra is the unital associative algebra whose representations correspond precisely to the representations of that Lie algebra. Universal enveloping algebras are used in the representati ...
of ''G'', in other words an invariant eigendistribution, with eigenvalue the
infinitesimal character In mathematics, the infinitesimal character of an irreducible representation ρ of a semisimple Lie group ''G'' on a vector space ''V'' is, roughly speaking, a mapping to scalars that encodes the process of first differentiating and then diagonali ...
of the representation π.
Harish-Chandra's regularity theorem In mathematics, Harish-Chandra's regularity theorem, introduced by , states that every invariant eigendistribution on a semisimple Lie group, and in particular every character of an irreducible unitary representation on a Hilbert space, is given by ...
states that any invariant eigendistribution, and in particular any character of an irreducible unitary representation on a Hilbert space, is given by a
locally integrable function In mathematics, a locally integrable function (sometimes also called locally summable function) is a function which is integrable (so its integral is finite) on every compact subset of its domain of definition. The importance of such functions lies ...
.


References

*A. W. Knapp, ''Representation Theory of Semisimple Groups: An Overview Based on Examples.'' {{isbn, 0-691-09089-0 Representation theory of Lie groups