Geometric Separator
   HOME
*





Geometric Separator
A geometric separator is a line (or another shape) that partitions a collection of geometric shapes into two subsets, such that proportion of shapes in each subset is bounded, and the number of shapes that do not belong to any subset (i.e. the shapes intersected by the separator itself) is small. When a geometric separator exists, it can be used for building divide-and-conquer algorithms for solving various problems in computational geometry. Separators that are lines General question In 1979, Helge Tverberg raised the following question. For two positive integers ''k'', ''l'', what is the smallest number ''n''(''k'',''l'') such that, for any family of pairwise-disjoint convex objects in the plane, there exists a straight line that has at least ''k'' objects on one side and at least ''l'' on the other side? The following results are known. * Obviously, ''n''(1,1)=1. * Hope and Katchalski proved that ''n''(''k'',1) ≤ 12(''k''-1) for all ''k'' ≥ 2. * Villanger prove ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Computational Geometry
Computational geometry is a branch of computer science devoted to the study of algorithms which can be stated in terms of geometry. Some purely geometrical problems arise out of the study of computational geometric algorithms, and such problems are also considered to be part of computational geometry. While modern computational geometry is a recent development, it is one of the oldest fields of computing with a history stretching back to antiquity. Analysis of algorithms, Computational complexity is central to computational geometry, with great practical significance if algorithms are used on very large datasets containing tens or hundreds of millions of points. For such sets, the difference between O(''n''2) and O(''n'' log ''n'') may be the difference between days and seconds of computation. The main impetus for the development of computational geometry as a discipline was progress in computer graphics and computer-aided design and manufacturing (Computer-aided design, CAD/Compu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Helly's Theorem
Helly's theorem is a basic result in discrete geometry on the intersection of convex sets. It was discovered by Eduard Helly in 1913,. but not published by him until 1923, by which time alternative proofs by and had already appeared. Helly's theorem gave rise to the notion of a Helly family. Statement Let be a finite collection of convex subsets of , with . If the intersection of every of these sets is nonempty, then the whole collection has a nonempty intersection; that is, :\bigcap_^n X_j\ne\varnothing. For infinite collections one has to assume compactness: Let be a collection of compact convex subsets of , such that every subcollection of cardinality at most has nonempty intersection. Then the whole collection has nonempty intersection. Proof We prove the finite version, using Radon's theorem as in the proof by . The infinite version then follows by the finite intersection property characterization of compactness: a collection of closed subsets of a compact spac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Separation Theorem (other)
Separation theorem may refer to several theorems in different scientific fields. Economics * Fisher separation theorem (corporation theory) - asserts that the objective of a corporation will be the maximization of its present value, regardless of the preferences of its shareholders. *Mutual fund separation theorem (portfolio theory) states that, under certain conditions, any investor's optimal portfolio can be constructed by holding each of certain mutual funds in appropriate ratios, where the number of mutual funds is smaller than the number of individual assets in the portfolio. Mathematics * Gabbay's separation theorem (mathematical logic and computer science) states that any arbitrary temporal logic formula can be rewritten in a logically equivalent "past → future" form. *Planar separator theorem (graph theory) states that any planar graph can be split into smaller pieces by removing a small number of vertices. * Lusin's separation theorem (descriptive set theory) states t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Guillotine Separation
Guillotine cutting is the process of producing small rectangular items of fixed dimensions from a given large rectangular sheet, using only guillotine-cuts. A guillotine-cut (also called an edge-to-edge cut) is a straight bisecting line going from one edge of an existing rectangle to the opposite edge, similarly to a paper guillotine. Guillotine cutting is particularly common in the glass industry. Glass sheets are scored along horizontal and vertical lines, and then broken along these lines to obtain smaller panels. It is also useful for cutting steel plates, cutting of wood sheets to make furniture, and cutting of cardboard into boxes. There are various optimization problems related to guillotine cutting, such as: maximize the total area of the produced pieces, or their total value; minimize the amount of waste (unused parts) of the large sheet, or the total number of sheets. They have been studied in combinatorial geometry, operations research and industrial engineering. A ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ham Sandwich Theorem
In mathematical measure theory, for every positive integer the ham sandwich theorem states that given measurable "objects" in -dimensional Euclidean space, it is possible to divide each one of them in half (with respect to their measure, e.g. volume) with a single -dimensional hyperplane. This is even possible if the objects overlap. It was proposed by Hugo Steinhaus and proved by Stefan Banach (explicitly in dimension 3, without taking the trouble to state the theorem in the -dimensional case), and also years later called the Stone–Tukey theorem after Arthur H. Stone and John Tukey. Naming The ham sandwich theorem takes its name from the case when and the three objects to be bisected are the ingredients of a ham sandwich. Sources differ on whether these three ingredients are two slices of bread and a piece of ham , bread and cheese and ham , or bread and butter and ham . In two dimensions, the theorem is known as the pancake theorem to refer to the flat nature of the two ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Contact Graph
In the mathematical area of graph theory, a contact graph or tangency graph is a graph whose vertices are represented by geometric objects (e.g. curves, line segments, or polygons), and whose edges correspond to two objects touching (but not crossing) according to some specified notion. It is similar to the notion of an intersection graph but differs from it in restricting the ways that the underlying objects are allowed to intersect each other. The circle packing theorem states that every planar graph can be represented as a contact graph of circles. The contact graphs of unit circles are called penny graphs. Representations as contact graphs of triangles, rectangles, squares, line segment In geometry, a line segment is a part of a straight line that is bounded by two distinct end points, and contains every point on the line that is between its endpoints. The length of a line segment is given by the Euclidean distance between ...s, or circular arcs have also been studied ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Circle Packing Theorem
The circle packing theorem (also known as the Koebe–Andreev–Thurston theorem) describes the possible tangency relations between circles in the plane whose interiors are disjoint. A circle packing is a connected collection of circles (in general, on any Riemann surface) whose interiors are disjoint. The intersection graph of a circle packing is the graph having a vertex for each circle, and an edge for every pair of circles that are tangent. If the circle packing is on the plane, or, equivalently, on the sphere, then its intersection graph is called a coin graph; more generally, intersection graphs of interior-disjoint geometric objects are called tangency graphs or contact graphs. Coin graphs are always connected, simple, and planar. The circle packing theorem states that these are the only requirements for a graph to be a coin graph: Circle packing theorem: For every connected simple planar graph ''G'' there is a circle packing in the plane whose intersection graph is (isom ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Planar Separator Theorem
In graph theory, the planar separator theorem is a form of isoperimetric inequality for planar graphs, that states that any planar graph can be split into smaller pieces by removing a small number of vertices. Specifically, the removal of vertices from an -vertex graph (where the invokes big O notation) can partition the graph into disjoint subgraphs each of which has at most vertices. A weaker form of the separator theorem with vertices in the separator instead of was originally proven by , and the form with the tight asymptotic bound on the separator size was first proven by . Since their work, the separator theorem has been reproven in several different ways, the constant in the term of the theorem has been improved, and it has been extended to certain classes of nonplanar graphs. Repeated application of the separator theorem produces a separator hierarchy which may take the form of either a tree decomposition or a branch-decomposition of the graph. Separator hierarc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Maximum Independent Set
In graph theory, an independent set, stable set, coclique or anticlique is a set of vertices in a graph, no two of which are adjacent. That is, it is a set S of vertices such that for every two vertices in S, there is no edge connecting the two. Equivalently, each edge in the graph has at most one endpoint in S. A set is independent if and only if it is a clique in the graph's complement. The size of an independent set is the number of vertices it contains. Independent sets have also been called "internally stable sets", of which "stable set" is a shortening. A maximal independent set is an independent set that is not a proper subset of any other independent set. A maximum independent set is an independent set of largest possible size for a given graph G. This size is called the independence number of ''G'' and is usually denoted by \alpha(G). The optimization problem of finding such a set is called the maximum independent set problem. It is a strongly NP-hard problem. As such ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Protein Folding
Protein folding is the physical process by which a protein chain is translated to its native three-dimensional structure, typically a "folded" conformation by which the protein becomes biologically functional. Via an expeditious and reproducible process, a polypeptide folds into its characteristic three-dimensional structure from a random coil. Each protein exists first as an unfolded polypeptide or random coil after being translated from a sequence of mRNA to a linear chain of amino acids. At this stage the polypeptide lacks any stable (long-lasting) three-dimensional structure (the left hand side of the first figure). As the polypeptide chain is being synthesized by a ribosome, the linear chain begins to fold into its three-dimensional structure. Folding of many proteins begins even during translation of the polypeptide chain. Amino acids interact with each other to produce a well-defined three-dimensional structure, the folded protein (the right hand side of the figure), ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Golden Ratio
In mathematics, two quantities are in the golden ratio if their ratio is the same as the ratio of their sum to the larger of the two quantities. Expressed algebraically, for quantities a and b with a > b > 0, where the Greek letter phi ( or \phi) denotes the golden ratio. The constant \varphi satisfies the quadratic equation \varphi^2 = \varphi + 1 and is an irrational number with a value of The golden ratio was called the extreme and mean ratio by Euclid, and the divine proportion by Luca Pacioli, and also goes by several other names. Mathematicians have studied the golden ratio's properties since antiquity. It is the ratio of a regular pentagon's diagonal to its side and thus appears in the construction of the dodecahedron and icosahedron. A golden rectangle—that is, a rectangle with an aspect ratio of \varphi—may be cut into a square and a smaller rectangle with the same aspect ratio. The golden ratio has been used to analyze the proportions of natural object ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Helge Tverberg
Helge Arnulf Tverberg (March 6, 1935December 28, 2020) was a Norwegian mathematician. He was a professor in the Mathematics Department at the University of Bergen, his speciality being combinatorics; he retired at the mandatory age of seventy. He was born in Bergen. He took the cand.real. degree at the University of Bergen in 1958, and the dr.philos. degree in 1968. He was a lecturer from 1958 to 1971 and professor from 1971 to his retirement in 2005. He was a visiting scholar at the University of Reading in 1966 and at the Australian National University, in Canberra, from 1980 to 1981, 1987 to 1988 and in 2004. He was a member of the Norwegian Academy of Science and Letters. Tverberg, in 1965, proved a result on intersection patterns of partitions of point configurations that has come to be known as Tverberg's partition theorem. It inaugurated a new branch of combinatorial geometry, with many variations and applications. An account by Günter M. Ziegler of Tverberg's work in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]