GRID2
   HOME
*





GRID2
Glutamate receptor, ionotropic, delta 2, also known as GluD2, GluRδ2, or δ2, is a protein that in humans is encoded by the ''GRID2'' gene. This protein together with GRID1, GluD1 belongs to the delta receptor subtype of ionotropic glutamate receptors. They possess 14–24% DNA sequence, sequence homology (biology), homology with AMPA receptor, AMPA, Kainate receptor, kainate, and NMDA receptor, NMDA subunits, but, despite their name, do not actually bind glutamate or various other glutamate agonists. delta iGluRs have long been considered orphan receptors as their endogenous ligand was unknown. They are now believed to bind glycine and D-serine but these do not result in channel opening. Function GluD2-containing receptors are selectively/predominantly expressed in Purkinje cells in the cerebellum where they play a key role in synaptogenesis, synaptic plasticity, and motor coordination. GluD2 induces synaptogenesis through interaction of its N-terminal domain with Cbln1, wh ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ionotropic Glutamate Receptor
Ionotropic glutamate receptors (iGluRs) are ligand-gated ion channels that are activated by the neurotransmitter glutamate. They mediate the majority of excitatory synaptic transmission throughout the central nervous system and are key players in synaptic plasticity, which is important for learning and memory. iGluRs have been divided into four subtypes on the basis of their ligand binding properties (pharmacology) and sequence similarity: AMPA receptors, kainate receptors, NMDA receptors and delta receptors (see below). AMPA receptors are the main charge carriers during basal transmission, permitting influx of sodium ions to depolarise the postsynaptic membrane. NMDA receptors are blocked by magnesium ions and therefore only permit ion flux following prior depolarisation. This enables them to act as coincidence detectors for synaptic plasticity. Calcium influx through NMDA receptors leads to persistent modifications in the strength of synaptic transmission. iGluRs are tetramer ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


GRIA1
Glutamate receptor 1 is a protein that in humans is encoded by the ''GRIA1'' gene. Function Glutamate receptors are the predominant excitatory neurotransmitter receptors in the mammalian brain and are activated in a variety of normal neurophysiologic processes. These receptors are heteromeric protein complexes with multiple subunits, each possessing transmembrane regions, and all arranged to form a ligand-gated ion channel. The classification of glutamate receptors is based on their activation by different pharmacologic agonists. The GRIA1 belongs to a family of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors. Each of the members (GRIA1–4) include flip and flop isoforms generated by alternative RNA splicing. The receptor subunits encoded by each isoform vary in their signal transduction properties. The isoform presented here is the flop isoform. In situ hybridization experiments showed that human GRIA1 mRNA is present in granule and pyramidal cells in t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


GRID1
Glutamate receptor delta-1 subunit also known as GluD1 or GluRδ1 is a transmembrane protein (1009 aa) encoded by the ''GRID1'' gene. A C-terminal GluD1 splicing isoform (896 aa) has been described based on mRNA analysis. Function This gene encodes a subunit of glutamate receptor ligand-gated ion channel. Most of these channels mediate fast excitatory synaptic transmission in the central nervous system. GluD1 is expressed in the central nervous system and is important in synaptic plasticity. Clinical significance Several genetic epidemiology studies have shown a strong association between several variants of the ''GRID1'' gene and increased risk of developing schizophrenia. See also * ''GRID2 Glutamate receptor, ionotropic, delta 2, also known as GluD2, GluRδ2, or δ2, is a protein that in humans is encoded by the ''GRID2'' gene. This protein together with GluD1 belongs to the delta receptor subtype of ionotropic glutamate receptors. ...'' References Further ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




PTPN4
Tyrosine-protein phosphatase non-receptor type 4 is an enzyme that in humans is encoded by the ''PTPN4'' gene. Function The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This protein contains a C-terminal PTP domain and an N-terminal domain homologous to the band 4.1 superfamily of cytoskeletal-associated proteins. This PTP has been shown to interact with glutamate receptor delta 2 and epsilon subunits, and is thought to play a role in signalling downstream of the glutamate receptors through tyrosine dephosphorylation. Interactions PTPN4 has been shown to interact with GRID2 Glutamate receptor, ionotropic, delta 2, also known as GluD2, GluRδ2, or δ2, is a protein that in humans is encoded by the ''GRID2'' gene. This protein together with GRID1, GluD1 belongs ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


GRIK2
Glutamate ionotropic receptor kainate type subunit 2, also known as ionotropic glutamate receptor 6 or GluR6, is a protein that in humans is encoded by the ''GRIK2'' (or ''GLUR6'') gene. Function This gene encodes a subunit of a kainate glutamate receptor. This receptor may have a role in synaptic plasticity, learning, and memory. It also may be involved in the transmission of visual information from the retina to the hypothalamus. The structure and function of the encoded protein is influenced by RNA editing. Alternatively spliced transcript variants encoding distinct isoforms have been described for this gene. Clinical significance Homozygosity for a GRIK2 deletion-inversion mutation is associated with non-syndromic autosomal recessive mental retardation. Interactions GRIK2 has been shown to interact with: * DLG1, * DLG4, * GRID2, * GRIK5, * GRIP1, * PICK1 and * SDCBP. RNA Editing Pre-mRNA for several neurotransmitter receptors and ion channels are substrates ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


GOPC
Golgi-associated PDZ and coiled-coil motif-containing protein is a protein that in humans is encoded by the ''GOPC'' gene. PIST is a PDZ domain-containing Golgi protein. PDZ domains contain approximately 90 amino acids and bind the extreme C terminus of proteins in a sequence-specific manner. upplied by OMIMref name="entrez" /> Interactions GOPC has been shown to interact with GRID2, BECN1, RHOQ, ACCN3, Cystic fibrosis transmembrane conductance regulator and CSPG5 Chondroitin sulfate proteoglycan 5 is a protein that in humans is encoded by the ''CSPG5'' gene. Interactions CSPG5 has been shown to interact with GOPC Golgi-associated PDZ and coiled-coil motif-containing protein is a protein that in humans is .... References Further reading

* * * * * * * * * * * * * * * * * * {{gene-6-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Neurexins
Neurexins (NRXN) are a family of presynaptic cell adhesion proteins that have roles in connecting neurons at the synapse. They are located mostly on the presynaptic membrane and contain a single transmembrane domain. The extracellular domain interacts with proteins in the synaptic cleft, most notably neuroligin, while the intracellular cytoplasmic portion interacts with proteins associated with exocytosis. Neurexin and neuroligin "shake hands," resulting in the connection between the two neurons and the production of a synapse. Neurexins mediate signaling across the synapse, and influence the properties of neural networks by synapse specificity. Neurexins were discovered as receptors for α-latrotoxin, a vertebrate-specific toxin in black widow spider venom that binds to presynaptic receptors and induces massive neurotransmitter release. In humans, alterations in genes encoding neurexins are implicated in autism and other cognitive diseases, such as Tourette syndrome and schiz ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Receptor Antagonist
A receptor antagonist is a type of receptor ligand or drug that blocks or dampens a biological response by binding to and blocking a receptor rather than activating it like an agonist. Antagonist drugs interfere in the natural operation of receptor proteins.Pharmacology Guide: In vitro pharmacology: concentration-response curves
" '' GlaxoWellcome.'' Retrieved on December 6, 2007.
They are sometimes called blockers; examples include alpha blockers,



Pentamidine
Pentamidine is an antimicrobial medication used to treat African trypanosomiasis, leishmaniasis, ''Balamuthia'' infections, babesiosis, and to prevent and treat pneumocystis pneumonia (PCP) in people with poor immune function. In African trypanosomiasis it is used for early disease before central nervous system involvement, as a second line option to suramin. It is an option for both visceral leishmaniasis and cutaneous leishmaniasis. Pentamidine can be given by injection into a vein or muscle or by inhalation. Common side effects of the injectable form include low blood sugar, pain at the site of injection, nausea, vomiting, low blood pressure, and kidney problems. Common side effects of the inhaled form include wheezing, cough, and nausea. It is unclear if doses should be changed in those with kidney or liver problems. Pentamidine is not recommended in early pregnancy but may be used in later pregnancy. Its safety during breastfeeding is unclear. Pentamidine is in the aromatic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]