GECCO
   HOME
*





GECCO
The Genetic and Evolutionary Computation Conference (GECCO) is the premier conference in the area of Evolutionary computation, genetic and evolutionary computation. GECCO has been held every year since 1999, when it was first established as a recombination of the International Conference on Genetic Algorithms (ICGA) and the Annual Genetic Programming Conference (GP). GECCO presents the latest high-quality results in genetic and evolutionary computation. Topics of interest include: genetic algorithms, genetic programming, evolution strategies, evolutionary programming, estimation of distribution algorithms, memetic algorithms, hyper-heuristics, evolutionary robotics, evolvable hardware, artificial life, ant colony optimization algorithms, swarm intelligence, artificial immune systems, digital Entertainment technology, entertainment technologies, evolutionary art, evolutionary combinatorial optimization, metaheuristics, evolutionary multi-objective optimization, evolutionary machine ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hyper-heuristics
A hyper-heuristic is a heuristic search method that seeks to automate, often by the incorporation of machine learning techniques, the process of selecting, combining, generating or adapting several simpler heuristics (or components of such heuristics) to efficiently solve computational search problems. One of the motivations for studying hyper-heuristics is to build systems which can handle classes of problems rather than solving just one problem.P. Ross, Hyper-heuristics, Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques (E. K. Burke and G. Kendall, eds.), Springer, 2005, pp. 529-556.E. Ozcan, B. Bilgin, E. E. KorkmazA Comprehensive Analysis of Hyper-heuristics Intelligent Data Analysis, 12:1, pp. 3-23, 2008. There might be multiple heuristics from which one can choose for solving a problem, and each heuristic has its own strength and weakness. The idea is to automatically devise algorithms by combining the strength and compensating for th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Association For Computing Machinery
The Association for Computing Machinery (ACM) is a US-based international learned society for computing. It was founded in 1947 and is the world's largest scientific and educational computing society. The ACM is a non-profit professional membership group, claiming nearly 110,000 student and professional members . Its headquarters are in New York City. The ACM is an umbrella organization for academic and scholarly interests in computer science ( informatics). Its motto is "Advancing Computing as a Science & Profession". History In 1947, a notice was sent to various people: On January 10, 1947, at the Symposium on Large-Scale Digital Calculating Machinery at the Harvard computation Laboratory, Professor Samuel H. Caldwell of Massachusetts Institute of Technology spoke of the need for an association of those interested in computing machinery, and of the need for communication between them. ..After making some inquiries during May and June, we believe there is ample interest to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Swarm Intelligence
Swarm intelligence (SI) is the collective behavior of decentralized, self-organized systems, natural or artificial. The concept is employed in work on artificial intelligence. The expression was introduced by Gerardo Beni and Jing Wang in 1989, in the context of cellular robotic systems. SI systems consist typically of a population of simple agents or boids interacting locally with one another and with their environment.Hu, J.; Turgut, A.; Krajnik, T.; Lennox, B.; Arvin, F.,Occlusion-Based Coordination Protocol Design for Autonomous Robotic Shepherding Tasks IEEE Transactions on Cognitive and Developmental Systems, 2020. The inspiration often comes from nature, especially biological systems. The agents follow very simple rules, and although there is no centralized control structure dictating how individual agents should behave, local, and to a certain degree random, interactions between such agents lead to the emergence of "intelligent" global behavior, unknown to the individual a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Genetic Programming
In artificial intelligence, genetic programming (GP) is a technique of evolving programs, starting from a population of unfit (usually random) programs, fit for a particular task by applying operations analogous to natural genetic processes to the population of programs. The operations are: selection of the fittest programs for reproduction (crossover) and mutation according to a predefined fitness measure, usually proficiency at the desired task. The crossover operation involves swapping random parts of selected pairs (parents) to produce new and different offspring that become part of the new generation of programs. Mutation involves substitution of some random part of a program with some other random part of a program. Some programs not selected for reproduction are copied from the current generation to the new generation. Then the selection and other operations are recursively applied to the new generation of programs. Typically, members of each new generation are on avera ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Parallel Problem Solving From Nature
Parallel Problem Solving from Nature, or PPSN, is a research conference focusing on the topic of natural computing. Other conferences in the area include the ACM Genetic and Evolutionary Computation Conference (GECCO), the IEEE Congress on Evolutionary Computation (CEC) and EvoStar (Evo*). In 2020 PPSN got a CORE rank of A, corresponding to an ''"excellent conference, and highly respected in a discipline area"''. History The idea behind PPSN emerged around 1989-1990 when Bernard Manderick, Reinhard Männer, Heinz Mühlenbein, and Hans-Paul Schwefel, realised they shared a common field of study that was not covered by the conferences on Operations Research, Physics, or Computer Science they attended regularly. The field of Genetic Algorithms had already been established in the form of the ICGA conference in 1985, but the "fathers" of PPSN wanted a wider focus, with algorithms that included problem solving, parallel computing and the use of natural metaphors (such as Darwi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Search-based Software Engineering
Search-based software engineering (SBSE) applies metaheuristic search techniques such as genetic algorithms, simulated annealing and tabu search to software engineering problems. Many activities in software engineering can be stated as optimization problems. Optimization techniques of operations research such as linear programming or dynamic programming are often impractical for large scale software engineering problems because of their computational complexity or their assumptions on the problem structure. Researchers and practitioners use metaheuristic search techniques, which impose little assumptions on the problem structure, to find near-optimal or "good-enough" solutions. SBSE problems can be divided into two types: * black-box optimization problems, for example, assigning people to tasks (a typical combinatorial optimization problem). * white-box problems where operations on source code need to be considered. Definition SBSE converts a software engineering problem into a c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Evolutionary Computation
In computer science, evolutionary computation is a family of algorithms for global optimization inspired by biological evolution, and the subfield of artificial intelligence and soft computing studying these algorithms. In technical terms, they are a family of population-based trial and error problem solvers with a metaheuristic or stochastic optimization character. In evolutionary computation, an initial set of candidate solutions is generated and iteratively updated. Each new generation is produced by stochastically removing less desired solutions, and introducing small random changes. In biological terminology, a population of solutions is subjected to natural selection (or artificial selection) and mutation. As a result, the population will gradually evolve to increase in fitness, in this case the chosen fitness function of the algorithm. Evolutionary computation techniques can produce highly optimized solutions in a wide range of problem settings, making them popular i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

EvoStar
EvoStar, or Evo*, is an international scientific event devoted to evolutionary computation held in Europe. Its structure has evolved over time and it currently comprises four conferences: EuroGP the annual conference on Genetic Programming, EvoApplications, the International Conference on the Applications of Evolutionary Computation, EvoCOP, European Conference on Evolutionary Computation in Combinatorial Optimisation, and EvoMUSART, the International Conference on Computational Intelligence in Music, Sound, Art and Design. According to a 2016 study EvoApplications is a Q1 conference, while EuroGP and EvoCOP are both Q2. In 2021, EuroGP, EvoApplications and EvoCOP obtained a CORE rank B. Other conferences in the area include the ACM Genetic and Evolutionary Computation Conference (GECCO), the IEEE Congress on Evolutionary Computation (CEC) and the bi-annual Parallel Problem Solving from Nature (PPSN). History Originally run under the name of EvoWorkshops, the event was an outc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Estimation Of Distribution Algorithm
''Estimation of distribution algorithms'' (EDAs), sometimes called ''probabilistic model-building genetic algorithms'' (PMBGAs), are stochastic optimization methods that guide the search for the optimum by building and sampling explicit probabilistic models of promising candidate solutions. Optimization is viewed as a series of incremental updates of a probabilistic model, starting with the model encoding an uninformative prior over admissible solutions and ending with the model that generates only the global optima. EDAs belong to the class of evolutionary algorithms. The main difference between EDAs and most conventional evolutionary algorithms is that evolutionary algorithms generate new candidate solutions using an ''implicit'' distribution defined by one or more variation operators, whereas EDAs use an ''explicit'' probability distribution encoded by a Bayesian network, a multivariate normal distribution, or another model class. Similarly as other evolutionary algorithms, EDAs ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


IEEE Congress On Evolutionary Computation
The IEEE Congress on Evolutionary Computation (CEC) is one of the largest and most important conferences within evolutionary computation (EC), the other conferences of similar importance being Genetic and Evolutionary Computation Conference (GECCO), Parallel Problem Solving from Nature (PPSN) and EvoStar (which comprises EuroGP, EvoApplications, EvoCOP, and EvoMUSART). CEC, which is organized by the IEEE Computational Intelligence Society in cooperation with the Evolutionary Programming Society, covers most subtopics of EC, such as evolutionary robotics, multiobjective optimization, evolvable hardware, theory of evolutionary computation, and evolutionary design. Papers can also be found that deal with topics that are related to rather than part of EC, such ant colony optimization In computer science and operations research, the ant colony optimization algorithm (ACO) is a probabilistic technique for solving computational problems which can be reduced to finding good pat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ant Colony Optimization Algorithms
In computer science and operations research, the ant colony optimization algorithm (ACO) is a probabilistic technique for solving computational problems which can be reduced to finding good paths through Graph (discrete mathematics), graphs. Artificial ants stand for multi-agent methods inspired by the behavior of real ants. The pheromone-based communication of biological ants is often the predominant paradigm used. Combinations of artificial ants and local search (optimization), local search algorithms have become a method of choice for numerous optimization tasks involving some sort of Graph (discrete mathematics), graph, e.g., vehicle routing problem, vehicle routing and internet routing. As an example, ant colony optimization is a class of optimization (computer science), optimization algorithm In mathematics and computer science, an algorithm () is a finite sequence of rigorous instructions, typically used to solve a class of specific Computational problem, p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Combinatorial Optimization
Combinatorial optimization is a subfield of mathematical optimization that consists of finding an optimal object from a finite set of objects, where the set of feasible solutions is discrete or can be reduced to a discrete set. Typical combinatorial optimization problems are the travelling salesman problem ("TSP"), the minimum spanning tree problem ("MST"), and the knapsack problem. In many such problems, such as the ones previously mentioned, exhaustive search is not tractable, and so specialized algorithms that quickly rule out large parts of the search space or approximation algorithms must be resorted to instead. Combinatorial optimization is related to operations research, algorithm theory, and computational complexity theory. It has important applications in several fields, including artificial intelligence, machine learning, auction theory, software engineering, VLSI, applied mathematics and theoretical computer science. Some research literature considers discrete o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]