HOME
*





Gross–Koblitz Formula
In mathematics, the Gross–Koblitz formula, introduced by expresses a Gauss sum using a product of values of the p-adic gamma function. It is an analog of the Chowla–Selberg formula for the usual gamma function. It implies the Hasse–Davenport relation and generalizes the Stickelberger theorem. gave another proof of the Gross–Koblitz formula (Boyarski being a pseudonym of Bernard Dwork Bernard Morris Dwork (May 27, 1923 – May 9, 1998) was an American mathematician, known for his application of ''p''-adic analysis to local zeta functions, and in particular for a proof of the first part of the Weil conjectures: the rationality ...), and gave an elementary proof. Statement The Gross–Koblitz formula states that the Gauss sum τ can be given in terms of the ''p''-adic gamma function Γ''p'' by :\tau_q(r) = -\pi^\prod_\Gamma_p \left(\frac \right) where * ''q'' is a power ''p''''f'' of a prime ''p'' *''r'' is an integer with 0 ≤ r < q–1 * ''r''(i) is t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gauss Sum
In algebraic number theory, a Gauss sum or Gaussian sum is a particular kind of finite sum of roots of unity, typically :G(\chi) := G(\chi, \psi)= \sum \chi(r)\cdot \psi(r) where the sum is over elements of some finite commutative ring , is a group homomorphism of the additive group into the unit circle, and is a group homomorphism of the unit group into the unit circle, extended to non-unit , where it takes the value 0. Gauss sums are the analogues for finite fields of the Gamma function. Such sums are ubiquitous in number theory. They occur, for example, in the functional equations of Dirichlet -functions, where for a Dirichlet character the equation relating and ) (where is the complex conjugate of ) involves a factor :\frac. History The case originally considered by Carl Friedrich Gauss was the quadratic Gauss sum, for the field of residues modulo a prime number , and the Legendre symbol. In this case Gauss proved that or for congruent to 1 or 3 m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


P-adic Gamma Function
In mathematics, the -adic number system for any prime number  extends the ordinary arithmetic of the rational numbers in a different way from the extension of the rational number system to the real and complex number systems. The extension is achieved by an alternative interpretation of the concept of "closeness" or absolute value. In particular, two -adic numbers are considered to be close when their difference is divisible by a high power of : the higher the power, the closer they are. This property enables -adic numbers to encode congruence information in a way that turns out to have powerful applications in number theory – including, for example, in the famous proof of Fermat's Last Theorem by Andrew Wiles. These numbers were first described by Kurt Hensel in 1897, though, with hindsight, some of Ernst Kummer's earlier work can be interpreted as implicitly using -adic numbers.Translator's introductionpage 35 "Indeed, with hindsight it becomes apparent that a discre ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Chowla–Selberg Formula
In mathematics, the Chowla–Selberg formula is the evaluation of a certain product of values of the gamma function at rational values in terms of values of the Dedekind eta function at imaginary quadratic irrational numbers. The result was essentially found by and rediscovered by . Statement In logarithmic form, the Chowla–Selberg formula states that in certain cases the sum : \frac\sum_r \chi(r)\log \Gamma\left( \frac \right) = \frac\log(4\pi\sqrt) +\sum_\tau\log\left(\sqrt, \eta(\tau), ^2\right) can be evaluated using the Kronecker limit formula. Here χ is the quadratic residue symbol modulo ''D'', where ''−D'' is the discriminant of an imaginary quadratic field. The sum is taken over 0 < ''r'' < ''D'', with the usual convention χ(''r'') = 0 if ''r'' and ''D'' have a common factor. The function η is the , a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Hasse–Davenport Relation
The Hasse–Davenport relations, introduced by , are two related identities for Gauss sums, one called the Hasse–Davenport lifting relation, and the other called the Hasse–Davenport product relation. The Hasse–Davenport lifting relation is an equality in number theory relating Gauss sums over different fields. used it to calculate the zeta function of a Fermat hypersurface over a finite field, which motivated the Weil conjectures. Gauss sums are analogues of the gamma function over finite fields, and the Hasse–Davenport product relation is the analogue of Gauss's multiplication formula : \Gamma(z) \; \Gamma\left(z + \frac\right) \; \Gamma\left(z + \frac\right) \cdots \Gamma\left(z + \frac\right) = (2 \pi)^ \; k^ \; \Gamma(kz). \,\! In fact the Hasse–Davenport product relation follows from the analogous multiplication formula for p-adic gamma function, ''p''-adic gamma functions together with the Gross–Koblitz formula of . Hasse–Davenport lifting relation Let ''F' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stickelberger Theorem
In mathematics, Stickelberger's theorem is a result of algebraic number theory, which gives some information about the Galois module structure of class groups of cyclotomic fields. A special case was first proven by Ernst Kummer (1847) while the general result is due to Ludwig Stickelberger ( 1890). The Stickelberger element and the Stickelberger ideal Let denote the th cyclotomic field, i.e. the extension of the rational numbers obtained by adjoining the th roots of unity to \mathbb (where is an integer). It is a Galois extension of \mathbb with Galois group isomorphic to the multiplicative group of integers modulo . The Stickelberger element (of level or of ) is an element in the group ring and the Stickelberger ideal (of level or of ) is an ideal in the group ring . They are defined as follows. Let denote a primitive th root of unity. The isomorphism from to is given by sending to defined by the relation :\sigma_a(\zeta_m) = \zeta_m^a. The Stickelberger element ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bernard Dwork
Bernard Morris Dwork (May 27, 1923 – May 9, 1998) was an American mathematician, known for his application of ''p''-adic analysis to local zeta functions, and in particular for a proof of the first part of the Weil conjectures: the rationality of the zeta-function of a variety over a finite field. The general theme of Dwork's research was ''p''-adic cohomology and ''p''-adic differential equations. He published two papers under the pseudonym Maurizio Boyarsky. Career Dwork received his Ph.D. at Columbia University in 1954 under direction of Emil Artin (his formal advisor was John Tate); Nick Katz was one of his students.. For his proof of the first part of the Weil conjectures, Dwork received (together with Kenkichi Iwasawa) the Cole Prize in 1962.Memorial article
– by

Transactions Of The American Mathematical Society
The ''Transactions of the American Mathematical Society'' is a monthly peer-reviewed scientific journal of mathematics published by the American Mathematical Society. It was established in 1900. As a requirement, all articles must be more than 15 printed pages. See also * ''Bulletin of the American Mathematical Society'' * '' Journal of the American Mathematical Society'' * ''Memoirs of the American Mathematical Society'' * ''Notices of the American Mathematical Society'' * ''Proceedings of the American Mathematical Society'' External links * ''Transactions of the American Mathematical Society''on JSTOR JSTOR (; short for ''Journal Storage'') is a digital library founded in 1995 in New York City. Originally containing digitized back issues of academic journals, it now encompasses books and other primary sources as well as current issues of j ... American Mathematical Society academic journals Mathematics journals Publications established in 1900 {{math-journal-st ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Springer-Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second largest academic publisher with 65 staff in 1872.Chronology
". Springer Science+Business Media.
In 1964, Springer expanded its business internationally, o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Graduate Texts In Mathematics
Graduate Texts in Mathematics (GTM) (ISSN 0072-5285) is a series of graduate-level textbooks in mathematics published by Springer-Verlag. The books in this series, like the other Springer-Verlag mathematics series, are yellow books of a standard size (with variable numbers of pages). The GTM series is easily identified by a white band at the top of the book. The books in this series tend to be written at a more advanced level than the similar Undergraduate Texts in Mathematics series, although there is a fair amount of overlap between the two series in terms of material covered and difficulty level. List of books #''Introduction to Axiomatic Set Theory'', Gaisi Takeuti, Wilson M. Zaring (1982, 2nd ed., ) #''Measure and Category – A Survey of the Analogies between Topological and Measure Spaces'', John C. Oxtoby (1980, 2nd ed., ) #''Topological Vector Spaces'', H. H. Schaefer, M. P. Wolff (1999, 2nd ed., ) #''A Course in Homological Algebra'', Peter Hilton, Urs Stammbac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Annals Of Mathematics
The ''Annals of Mathematics'' is a mathematical journal published every two months by Princeton University and the Institute for Advanced Study. History The journal was established as ''The Analyst'' in 1874 and with Joel E. Hendricks as the founding editor-in-chief. It was "intended to afford a medium for the presentation and analysis of any and all questions of interest or importance in pure and applied Mathematics, embracing especially all new and interesting discoveries in theoretical and practical astronomy, mechanical philosophy, and engineering". It was published in Des Moines, Iowa, and was the earliest American mathematics journal to be published continuously for more than a year or two. This incarnation of the journal ceased publication after its tenth year, in 1883, giving as an explanation Hendricks' declining health, but Hendricks made arrangements to have it taken over by new management, and it was continued from March 1884 as the ''Annals of Mathematics''. The n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]