Great Cubicuboctahedron
   HOME
*



picture info

Great Cubicuboctahedron
In geometry, the great cubicuboctahedron is a nonconvex uniform polyhedron, indexed as U14. It has 20 faces (8 triangles, 6 squares and 6 octagrams), 48 edges, and 24 vertices. Its square faces and its octagrammic faces are parallel to those of a cube, while its triangular faces are parallel to those of an octahedron: hence the name ''cubicuboctahedron''. The ''great'' suffix serves to distinguish it from the small cubicuboctahedron, which also has faces in the aforementioned directions. Orthographic projections Related polyhedra It shares the vertex arrangement with the convex truncated cube and two other nonconvex uniform polyhedra. It additionally shares its edge arrangement with the nonconvex great rhombicuboctahedron (having the triangular faces and 6 square faces in common), and with the great rhombihexahedron (having the octagrammic faces in common). Great hexacronic icositetrahedron The great hexacronic icositetrahedron (or great lanceal disdodecahedron) is th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Great Cubicuboctahedron
In geometry, the great cubicuboctahedron is a nonconvex uniform polyhedron, indexed as U14. It has 20 faces (8 triangles, 6 squares and 6 octagrams), 48 edges, and 24 vertices. Its square faces and its octagrammic faces are parallel to those of a cube, while its triangular faces are parallel to those of an octahedron: hence the name ''cubicuboctahedron''. The ''great'' suffix serves to distinguish it from the small cubicuboctahedron, which also has faces in the aforementioned directions. Orthographic projections Related polyhedra It shares the vertex arrangement with the convex truncated cube and two other nonconvex uniform polyhedra. It additionally shares its edge arrangement with the nonconvex great rhombicuboctahedron (having the triangular faces and 6 square faces in common), and with the great rhombihexahedron (having the octagrammic faces in common). Great hexacronic icositetrahedron The great hexacronic icositetrahedron (or great lanceal disdodecahedron) is th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Nonconvex Great Rhombicuboctahedron
In geometry, the nonconvex great rhombicuboctahedron is a nonconvex uniform polyhedron, indexed as U17. It has 26 faces (8 triangles and 18 squares), 48 edges, and 24 vertices. It is represented by the Schläfli symbol rr and Coxeter-Dynkin diagram of . Its vertex figure is a crossed quadrilateral. This model shares the name with the convex ''great rhombicuboctahedron'', also called the truncated cuboctahedron. An alternative name for this figure is quasirhombicuboctahedron. From that derives its Bowers acronym: querco. Orthographic projections Cartesian coordinates Cartesian coordinates for the vertices of a ''nonconvex great rhombicuboctahedron'' centered at the origin with edge length 1 are all the permutations of : (±''ξ'', ±1, ±1), where ''ξ'' =  − 1. Related polyhedra It shares the vertex arrangement with the convex truncated cube. It additionally shares its edge arrangement In geometry, a vertex arrangement is a set of points in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

List Of Uniform Polyhedra
In geometry, a uniform polyhedron is a polyhedron which has regular polygons as faces and is vertex-transitive ( transitive on its vertices, isogonal, i.e. there is an isometry mapping any vertex onto any other). It follows that all vertices are congruent, and the polyhedron has a high degree of reflectional and rotational symmetry. Uniform polyhedra can be divided between convex forms with convex regular polygon faces and star forms. Star forms have either regular star polygon faces or vertex figures or both. This list includes these: * all 75 nonprismatic uniform polyhedra; * a few representatives of the infinite sets of prisms and antiprisms; * one degenerate polyhedron, Skilling's figure with overlapping edges. It was proven in that there are only 75 uniform polyhedra other than the infinite families of prisms and antiprisms. John Skilling discovered an overlooked degenerate example, by relaxing the condition that only two faces may meet at an edge. This is a degenerate u ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Great Hexacronic Icositetrahedron
In geometry, the great hexacronic icositetrahedron is the dual of the great cubicuboctahedron. Its faces are kites. Part of each kite lies inside the solid, hence is invisible in solid models. Proportions The kites have two angles of \arccos(\frac-\frac\sqrt)\approx 117.200\,570\,380\,16^, one of \arccos(-\frac+\frac\sqrt)\approx 94.199\,144\,429\,76^ and one of \arccos(\frac+\frac\sqrt)\approx 31.399\,714\,809\,92^. The dihedral angle A dihedral angle is the angle between two intersecting planes or half-planes. In chemistry, it is the clockwise angle between half-planes through two sets of three atoms, having two atoms in common. In solid geometry, it is defined as the uni ... equals \arccos(\frac)\approx 94.531\,580\,798\,20^. The ratio between the lengths of the long and short edges is 2+\frac\sqrt\approx 2.70710678118655. References * External links * Dual uniform polyhedra {{Polyhedron-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Great Hexacronic Icositetrahedron
In geometry, the great hexacronic icositetrahedron is the dual of the great cubicuboctahedron. Its faces are kites. Part of each kite lies inside the solid, hence is invisible in solid models. Proportions The kites have two angles of \arccos(\frac-\frac\sqrt)\approx 117.200\,570\,380\,16^, one of \arccos(-\frac+\frac\sqrt)\approx 94.199\,144\,429\,76^ and one of \arccos(\frac+\frac\sqrt)\approx 31.399\,714\,809\,92^. The dihedral angle A dihedral angle is the angle between two intersecting planes or half-planes. In chemistry, it is the clockwise angle between half-planes through two sets of three atoms, having two atoms in common. In solid geometry, it is defined as the uni ... equals \arccos(\frac)\approx 94.531\,580\,798\,20^. The ratio between the lengths of the long and short edges is 2+\frac\sqrt\approx 2.70710678118655. References * External links * Dual uniform polyhedra {{Polyhedron-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Great Rhombihexahedron
In geometry, the great rhombihexahedron (or great rhombicube) is a nonconvex uniform polyhedron, indexed as U21. It has 18 faces (12 squares and 6 octagrams), 48 edges, and 24 vertices. Its dual is the great rhombihexacron. Its vertex figure is a crossed quadrilateral. Orthogonal projections Gallery Related polyhedra It shares the vertex arrangement with the convex truncated cube. It additionally shares its edge arrangement with the nonconvex great rhombicuboctahedron (having 12 square faces in common), and with the great cubicuboctahedron (having the octagrammic faces in common). It may be constructed as the exclusive or (blend) of three octagrammic prisms. Similarly, the small rhombihexahedron may be constructed as the exclusive or of three octagonal prisms. Great rhombihexacron The great rhombihexacron is a nonconvex isohedral polyhedron. It is the dual of the uniform great rhombihexahedron (U21). It has 24 identical bow-tie-shaped faces, 18 vertices, a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Nonconvex Great Rhombicuboctahedron
In geometry, the nonconvex great rhombicuboctahedron is a nonconvex uniform polyhedron, indexed as U17. It has 26 faces (8 triangles and 18 squares), 48 edges, and 24 vertices. It is represented by the Schläfli symbol rr and Coxeter-Dynkin diagram of . Its vertex figure is a crossed quadrilateral. This model shares the name with the convex ''great rhombicuboctahedron'', also called the truncated cuboctahedron. An alternative name for this figure is quasirhombicuboctahedron. From that derives its Bowers acronym: querco. Orthographic projections Cartesian coordinates Cartesian coordinates for the vertices of a ''nonconvex great rhombicuboctahedron'' centered at the origin with edge length 1 are all the permutations of : (±''ξ'', ±1, ±1), where ''ξ'' =  − 1. Related polyhedra It shares the vertex arrangement with the convex truncated cube. It additionally shares its edge arrangement In geometry, a vertex arrangement is a set of points in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Uniform Great Rhombicuboctahedron
In geometry, the nonconvex great rhombicuboctahedron is a nonconvex uniform polyhedron, indexed as U17. It has 26 faces (8 triangles and 18 squares), 48 edges, and 24 vertices. It is represented by the Schläfli symbol rr and Coxeter-Dynkin diagram of . Its vertex figure is a crossed quadrilateral. This model shares the name with the convex ''great rhombicuboctahedron'', also called the truncated cuboctahedron. An alternative name for this figure is quasirhombicuboctahedron. From that derives its Bowers acronym: querco. Orthographic projections Cartesian coordinates Cartesian coordinates for the vertices of a ''nonconvex great rhombicuboctahedron'' centered at the origin with edge length 1 are all the permutations of : (±''ξ'', ±1, ±1), where ''ξ'' =  − 1. Related polyhedra It shares the vertex arrangement with the convex truncated cube. It additionally shares its edge arrangement with the great cubicuboctahedron (having the triangula ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Truncated Cube
In geometry, the truncated cube, or truncated hexahedron, is an Archimedean solid. It has 14 regular faces (6 octagonal and 8 triangular), 36 edges, and 24 vertices. If the truncated cube has unit edge length, its dual triakis octahedron has edges of lengths 2 and 2 + . Area and volume The area ''A'' and the volume ''V'' of a truncated cube of edge length ''a'' are: :\begin A &= 2\left(6+6\sqrt+\sqrt\right)a^2 &&\approx 32.434\,6644a^2 \\ V &= \fraca^3 &&\approx 13.599\,6633a^3. \end Orthogonal projections The ''truncated cube'' has five special orthogonal projections, centered, on a vertex, on two types of edges, and two types of faces: triangles, and octagons. The last two correspond to the B2 and A2 Coxeter planes. Spherical tiling The truncated cube can also be represented as a spherical tiling, and projected onto the plane via a stereographic projection. This projection is conformal, preserving angles but not areas or lengths. Straight lines on the sphere are pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Truncated Hexahedron
In geometry, the truncated cube, or truncated hexahedron, is an Archimedean solid. It has 14 regular faces (6 octagonal and 8 triangular), 36 edges, and 24 vertices. If the truncated cube has unit edge length, its dual triakis octahedron has edges of lengths 2 and 2 + . Area and volume The area ''A'' and the volume ''V'' of a truncated cube of edge length ''a'' are: :\begin A &= 2\left(6+6\sqrt+\sqrt\right)a^2 &&\approx 32.434\,6644a^2 \\ V &= \fraca^3 &&\approx 13.599\,6633a^3. \end Orthogonal projections The ''truncated cube'' has five special orthogonal projections, centered, on a vertex, on two types of edges, and two types of faces: triangles, and octagons. The last two correspond to the B2 and A2 Coxeter planes. Spherical tiling The truncated cube can also be represented as a spherical tiling, and projected onto the plane via a stereographic projection. This projection is conformal, preserving angles but not areas or lengths. Straight lines on the sphere are pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Great Rhombihexahedron
In geometry, the great rhombihexahedron (or great rhombicube) is a nonconvex uniform polyhedron, indexed as U21. It has 18 faces (12 squares and 6 octagrams), 48 edges, and 24 vertices. Its dual is the great rhombihexacron. Its vertex figure is a crossed quadrilateral. Orthogonal projections Gallery Related polyhedra It shares the vertex arrangement with the convex truncated cube. It additionally shares its edge arrangement with the nonconvex great rhombicuboctahedron (having 12 square faces in common), and with the great cubicuboctahedron (having the octagrammic faces in common). It may be constructed as the exclusive or (blend) of three octagrammic prisms. Similarly, the small rhombihexahedron may be constructed as the exclusive or of three octagonal prisms. Great rhombihexacron The great rhombihexacron is a nonconvex isohedral polyhedron. It is the dual of the uniform great rhombihexahedron (U21). It has 24 identical bow-tie-shaped faces, 18 vertices, a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Edge Arrangement
In geometry, a vertex arrangement is a set of points in space described by their relative positions. They can be described by their use in polytopes. For example, a ''square vertex arrangement'' is understood to mean four points in a plane, equal distance and angles from a center point. Two polytopes share the same ''vertex arrangement'' if they share the same 0-skeleton. A group of polytopes that shares a vertex arrangement is called an ''army''. Vertex arrangement The same set of vertices can be connected by edges in different ways. For example, the ''pentagon'' and ''pentagram'' have the same ''vertex arrangement'', while the second connects alternate vertices. A ''vertex arrangement'' is often described by the convex hull polytope which contains it. For example, the regular ''pentagram'' can be said to have a (regular) ''pentagonal vertex arrangement''. Infinite tilings can also share common ''vertex arrangements''. For example, this triangular lattice of points ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]