HOME
*





Glossary Of Artificial Intelligence
This glossary of artificial intelligence is a list of definitions of terms and concepts relevant to the study of artificial intelligence, its sub-disciplines, and related fields. Related glossaries include Glossary of computer science, Glossary of robotics, and Glossary of machine vision. A B C D E F G H I J K ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Artificial Intelligence
Artificial intelligence (AI) is intelligence—perceiving, synthesizing, and inferring information—demonstrated by machines, as opposed to intelligence displayed by animals and humans. Example tasks in which this is done include speech recognition, computer vision, translation between (natural) languages, as well as other mappings of inputs. The ''Oxford English Dictionary'' of Oxford University Press defines artificial intelligence as: the theory and development of computer systems able to perform tasks that normally require human intelligence, such as visual perception, speech recognition, decision-making, and translation between languages. AI applications include advanced web search engines (e.g., Google), recommendation systems (used by YouTube, Amazon and Netflix), understanding human speech (such as Siri and Alexa), self-driving cars (e.g., Tesla), automated decision-making and competing at the highest level in strategic game systems (such as chess and Go). ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Technological Change
Technological change (TC) or technological development is the overall process of invention, innovation and diffusion of technology or processes.From ''The New Palgrave Dictionary otechnical change by S. Metcalfe.  •biased and biased technological change by Peter L. Rousseau.  •skill-biased technical change by Giovanni L. Violante. In essence, technological change covers the invention of technologies (including processes) and their commercialization or release as open source via research and development (producing emerging technologies), the continual improvement process, continual improvement of technologies (in which they often become less expensive), and the diffusion of technologies throughout industry or society (which sometimes involves disruption and convergence). In short, technological change is based on both better and more technology. Modeling technological change In its earlier days, technological change was illustrated with the 'Linear Model of Inn ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Conditional (programming)
In computer science, conditionals (that is, conditional statements, conditional expressions and conditional constructs,) are programming language commands for handling decisions. Specifically, conditionals perform different computations or actions depending on whether a programmer-defined boolean ''condition'' evaluates to true or false. In terms of control flow, the decision is always achieved by selectively altering the control flow based on some condition (apart from the case of branch predication). Although dynamic dispatch is not usually classified as a conditional construct, it is another way to select between alternatives at runtime. Terminology In imperative programming languages, the term "conditional statement" is usually used, whereas in functional programming, the terms "conditional expression" or "conditional construct" are preferred, because these terms all have distinct meanings. If–then(–else) The if–then construct (sometimes called if–then–els ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Inference System
In the field of artificial intelligence, an inference engine is a component of the system that applies logical rules to the knowledge base to deduce new information. The first inference engines were components of expert systems. The typical expert system consisted of a knowledge base and an inference engine. The knowledge base stored facts about the world. The inference engine applies logical rules to the knowledge base and deduced new knowledge. This process would iterate as each new fact in the knowledge base could trigger additional rules in the inference engine. Inference engines work primarily in one of two modes either special rule or facts: forward chaining and backward chaining. Forward chaining starts with the known facts and asserts new facts. Backward chaining starts with goals, and works backward to determine what facts must be asserted so that the goals can be achieved. Architecture The logic that an inference engine uses is typically represented as IF-THEN rules. The g ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Adaptive Neuro Fuzzy Inference System
An adaptive neuro-fuzzy inference system or adaptive network-based fuzzy inference system (ANFIS) is a kind of artificial neural network that is based on Takagi–Sugeno fuzzy inference system. The technique was developed in the early 1990s. Since it integrates both neural networks and fuzzy logic principles, it has potential to capture the benefits of both in a single framework. Its inference system corresponds to a set of fuzzy IF–THEN rules that have learning capability to approximate nonlinear functions. Hence, ANFIS is considered to be a universal estimator. For using the ANFIS in a more efficient and optimal way, one can use the best parameters obtained by genetic algorithm. It has uses in intelligent situational aware energy management system. ANFIS architecture It is possible to identify two parts in the network structure, namely premise and consequence parts. In more details, the architecture is composed by five layers. The first layer takes the input values and determin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Adaptive Algorithm
An adaptive algorithm is an algorithm that changes its behavior at the time it is run, based on information available and on ''a priori'' defined reward mechanism (or criterion). Such information could be the story of recently received data, information on the available computational resources, or other run-time acquired (or ''a priori'' known) information related to the environment in which it operates. Among the most used adaptive algorithms is the Widrow-Hoff’s least mean squares (LMS), which represents a class of stochastic gradient-descent algorithms used in adaptive filtering and machine learning. In adaptive filtering the LMS is used to mimic a desired filter by finding the filter coefficients that relate to producing the least mean square of the error signal (difference between the desired and the actual signal). For example, stable partition, using no additional memory is ''O''(''n'' lg ''n'') but given ''O''(''n'') memory, it can be ''O''(''n'') in time. As implement ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Activation Function
In artificial neural networks, the activation function of a node defines the output of that node given an input or set of inputs. A standard integrated circuit can be seen as a digital network of activation functions that can be "ON" (1) or "OFF" (0), depending on input. This is similar to the linear perceptron in neural networks. However, only ''nonlinear'' activation functions allow such networks to compute nontrivial problems using only a small number of nodes, and such activation functions are called nonlinearities. Classification of activation functions The most common activation functions can be divided in three categories: ridge functions, radial functions and fold functions. An activation function f is saturating if \lim_ , \nabla f(v), = 0. It is nonsaturating if it is not saturating. Non-saturating activation functions, such as ReLU, may be better than saturating activation functions, as they don't suffer from vanishing gradient. Ridge activation functions ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Action Selection
Action selection is a way of characterizing the most basic problem of intelligent systems: what to do next. In artificial intelligence and computational cognitive science, "the action selection problem" is typically associated with intelligent agents and animats—artificial systems that exhibit complex behaviour in an agent environment. The term is also sometimes used in ethology or animal behavior. One problem for understanding action selection is determining the level of abstraction used for specifying an "act". At the most basic level of abstraction, an atomic act could be anything from ''contracting a muscle cell'' to ''provoking a war''. Typically for any one action-selection mechanism, the set of possible actions is predefined and fixed. Most researchers working in this field place high demands on their agents: * The acting agent typically must select its action in dynamic and unpredictable environments. * The agents typically act in real time; therefore they must make de ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Action Model Learning
Action model learning (sometimes abbreviated action learning) is an area of machine learning concerned with creation and modification of software agent's knowledge about ''effects'' and ''preconditions'' of the ''actions'' that can be executed within its ''environment''. This knowledge is usually represented in logic-based action description language and used as the input for automated planners. Learning action models is important when goals change. When an agent acted for a while, it can use its accumulated knowledge about actions in the domain to make better decisions. Thus, learning action models differs from reinforcement learning. It enables reasoning about actions instead of expensive trials in the world. Action model learning is a form of inductive reasoning, where new knowledge is generated based on agent's ''observations''. It differs from standard supervised learning in that correct input/output pairs are never presented, nor imprecise action models explicitly correcte ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Automated Planning
Automation describes a wide range of technologies that reduce human intervention in processes, namely by predetermining decision criteria, subprocess relationships, and related actions, as well as embodying those predeterminations in machines. Automation has been achieved by various means including mechanical, hydraulic, pneumatic, electrical, electronic devices, and computers, usually in combination. Complicated systems, such as modern factories, airplanes, and ships typically use combinations of all of these techniques. The benefit of automation includes labor savings, reducing waste, savings in electricity costs, savings in material costs, and improvements to quality, accuracy, and precision. Automation includes the use of various equipment and control systems such as machinery, processes in factories, boilers, and heat-treating ovens, switching on telephone networks, steering, and stabilization of ships, aircraft, and other applications and vehicles with reduced human inte ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Robotics
Robotics is an interdisciplinary branch of computer science and engineering. Robotics involves design, construction, operation, and use of robots. The goal of robotics is to design machines that can help and assist humans. Robotics integrates fields of mechanical engineering, electrical engineering, information engineering, mechatronics, electronics, bioengineering, computer engineering, control engineering, software engineering, mathematics, etc. Robotics develops machines that can substitute for humans and replicate human actions. Robots can be used in many situations for many purposes, but today many are used in dangerous environments (including inspection of radioactive materials, bomb detection and deactivation), manufacturing processes, or where humans cannot survive (e.g. in space, underwater, in high heat, and clean up and containment of hazardous materials and radiation). Robots can take any form, but some are made to resemble humans in appearance. This is claim ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]